Possible skeletal transformations of pyridine and phosphinine during their thermal isomerization

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Based on the properties of the of p-electron conjugated system in cyclic polyenes, possible spatial structures of the transition states of the thermal isomerization reactions of pyridine and phosphinine in an oxygen-free atmosphere were found. The existence of transition states is determined by different levels of the stabilization effect of the p-electron conjugation. The determination of the spatial and electronic characteristics of the transition states of pyridine and phosphinine was carried out by the DFT/B3LYP/6-31G* method. Schemes were constructed and potential barriers of the thermal isomerization reactions of pyridine and phosphinine were calculated. A study of the reactivity of the pyridine and the phosphinine in thermal isomerization processes showed a decrease in the degree of aromaticity of phosphinine compared to pyridine.

Texto integral

Acesso é fechado

Sobre autores

O. Tomilin

National Research Mordovia State University

Email: rodionova_j87@mail.ru
ORCID ID: 0000-0002-1570-230X
Rússia, ul. Bolshevistskaya, 68B, Saransk, 430005

L. Fomina

National Research Mordovia State University

Email: rodionova_j87@mail.ru
ORCID ID: 0000-0002-3971-6714
Rússia, ul. Bolshevistskaya, 68B, Saransk, 430005

E. Rodionova

National Research Mordovia State University

Autor responsável pela correspondência
Email: rodionova_j87@mail.ru
ORCID ID: 0000-0001-7921-2732
Rússia, ul. Bolshevistskaya, 68B, Saransk, 430005

Bibliografia

  1. Родионова Е.В., Томилин О.Б., Фомина Л.В. ЖОрХ. 2021, 57, 135–142. [Rodionova E.V., Tomilin O.B., Fomina L.V., Russ. J. Org. Chem. 2021, 57, 135–142.] doi: 10.1134/S1070428021020019
  2. Томилин О.Б., Фомина Л.В., Родионова Е.В. ЖОрХ. 2022, 58, 392–405. [Tomilin O.B., Fomina L.V., Rodionova E.V., Russ. J. Org. Chem. 2022, 58, 392–405.] doi: 10.31857/S0514749222040048
  3. Bird C.W. Тetrahedron. 1990, 46 (16), 5697–5702. doi: 10.1016/s0040-4020(01)87768-1
  4. Bird C.W. Тetrahedron. 1986, 42 (1), 89–92. doi: 10.1016/S0040-4020(01)87405-6
  5. Bachrach S. M. J. Organometal. Chem. 2002, 643, 39–46. doi: 10.1016/S0022-328X(01)01144-5
  6. Dewar M. J. S., Holder A. J. Heterocycles. 1986, 28, 1135–1156.
  7. Granovsky A.A., Firefly Version 8; http://classic.chem.msu.su/gran/firefly/index.html.
  8. Tokoyama H., Yamakado H., Maeda S., Ohno K. Bull. Chem. Soc. Jpn. 2015, 88, 1284–1290. doi: 10.1246/bcsj.20150088
  9. Wu B., Wang J., Liu X., Zhu R. Nat. Commun. 2021, 12, 1–8. doi: 10.1038/s41467-021-24054-3
  10. Katz T.J., Roth R.J., Acton N., Carnahan E.J. Org. Chem. 1999, 64 (20), 7663–7664. doi: 10.1021/jo990883g
  11. Katz T.J., Acton N. J. Am. Chem. Soc. 1973, 95, 2738–2739. doi: 10.1021/ja00789a084
  12. Billups W., Haley M., Boese R., Bläser D. Tetrahedron. 1994, 50, 10693–10700. doi: 10.1016/S0040-4020(01)89261-9
  13. Ota K., Kinjo R. Chem. Asian J. 2020, 15, 2558–2574. doi: 10.1002/asia.202000535
  14. Yavari I., Dehghan S., Nikpoor-Nezhati M. Phosphorus, Sulfur Silicon 2003, 178 (4), 869–880. doi: 10.1080/10426500307798
  15. Nakamura T., Mesuda A., Kudo T. Organometal. 2020, 39, 3041–3049. doi: 10.1021/acs.organomet.0c00440
  16. Priyakumar U.D., Dinadayalane T.C., Sastry G.N. Chem. Phys. Lett. 2001, 336, 343–348. doi: 10.1016/S0009-2614(01)00148-8
  17. Kudoh S., Takayanagi M., Nakata M. J. Photochem. Photobiol. A. 1999, 123 (1-3), 25–30. doi: 10.1016/s1010-6030(99)00035
  18. Hees, U., Vogelbacher U.-J., Michels G., Regitz M. Tetrahedron. 1989, 45 (10), 3115–3130. doi: 10.1016/s0040-4020(01)80138
  19. Johnstone E., Sodeau J.R. J. Phys. Chem. 1991, 95 (1), 165–169. doi: 10.1021/j100154a033
  20. Pavlik J.W., Kebedeb N. ARKIVOC. 2018, VI, 254–271. doi: 10.24820/ark.5550190.p010.748
  21. Maurizio A. Curr. Org. Chem. 2021, 25, 1659–1685. doi 0.2174/1385272825666210706124855
  22. Nistanaki S.K., Nelson H.M. ACS Macro Lett. 2020, 9, 731−735. doi: 10.1021/acsmacrolett.0c00227
  23. Blatter K., Rösch W., Vogelbacher U.-J., Fink J., Regitz M. Angew. Chem., Int. Ed. Engl. 1987, 26, 85–86. doi: 10.1002/Anie.198700851
  24. Mathey F. Modern Heterocycl. Chem. 2011, 2071–2116. doi: 10.1002/9783527637737.ch23
  25. Fink J., Rösch W., Vogelbacher U.-J., Regitz M. Angew. Chem., Int. Ed. Engl. 1986, 25, 280–282. doi: 10.1002/anie.198602801

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Example of isospectral graphs for [6]-annulene

Baixar (35KB)
3. Fig. 2. Isospectral graphs C5H5X (X = N, P)

Baixar (95KB)
4. Fig. 3. Structural formulas of valence-conformational isomers of pyridine (phosphinine)

Baixar (102KB)
5. Fig. 4. Spatial structures and values ​​of the total energy of the ground and transition states of C5H5X molecules (X = N, P), generated by molecular graphs with different numbers L. The values ​​of the total energy of the ground and transition states of phosphinine are indicated in italics.

Baixar (269KB)
6. Fig. 5. Paths of possible skeletal transformations of pyridine

Baixar (342KB)
7. Fig. 6. Pathways of possible skeletal transformations of phosphinine

Baixar (243KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024