Two-dimensional self-trapping structures in three-dimensional space

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

It is known that if a finite set of convex figures is present on the plane, whose interiors do not intersect, then among these figures there is at least one outermost figure – one that can be continuously moved “to infinity” (outside a large circle containing the other figures), while leaving all other figures stationary and not intersecting their interiors during the movement. It has been discovered that in three-dimensional space, there exists a phenomenon of self-trapping structures. A self-trapping structure is a finite (or infinite) set of convex bodies with non-intersecting interiors, such that if all but one body is fixed, that body cannot be “carried to infinity”. Since ancient times, existing structures have been based on the consideration of layers made of cubes, tetrahedra, and octahedra, as well as their variations. In this work, we consider a fundamentally new phenomenon of two-dimensional self-trapping structures: a set of two-dimensional polygons in three-dimensional space, where each polygonal tile cannot be carried to infinity. Thin tiles are used to assemble self-trapping decahedra, from which second-order structures are then formed. In particular, a construction of a column composed of decahedra is presented, which is stable when fixing two outermost decahedra, rather than the entire boundary of the layer, as in previously investigated structures.

作者简介

V. Manturova

Moscow Institute of Physics and Technology; Kazan Federal University; Northeastern University

编辑信件的主要联系方式.
Email: vomanturov@yandex.ru
俄罗斯联邦, Moscow; Kazan; Shenyang, China

A. Kanel-Belov

Moscow Institute of Physics and Technology; Bar-Ilan University; Nosov Magnitogorsk State Technical University

Email: kanelster@gmail.com
俄罗斯联邦, Moscow; Ramat Gan, Israel; Magnitogorsk

S. Kim

Jilin University

Email: kimseongjeong@jlu.edu.cn
中国, Changchun

F. Nilov

Moscow Institute of Physics and Technology; Moscow State University

Email: nilovfk@gmail.com
俄罗斯联邦, Moscow; Moscow

参考

  1. Kanel-Belov A.J., Dyski A.V., Estrin Y., Pasternak E., Ivanov I.A. Interlocking of convex polyhedra: towards a geometric theory of fragmented solids. Moscow Mathematical Journal, 2010. arXiv:0812.5089v1.
  2. Канель-Белов А.Я. Самозаклинивающиеся структуры // Квант. Физико-математический журнал для школьников и студентов. Январь–февраль 2009. Т. 1. С. 20–23.
  3. Djumas L., Simon G.P., Estrin Y. et al. Deformation mechanics of non-planar topologically interlocked assemblies with structural hierarchy and varying geometry // Nature. Sci Rep 7. 2017. P. 11844. https://doi.org/10.1038/s41598-017-12147-3
  4. Khandelwal S., Siegmund T., Cipra R.J., Bolton J.S. Transverse Loading of Cellular Topologically Interlocked Materials // Int. J. Solids Struct. 2012. Vol. 49. No. 18. P. 2394–2403.
  5. Khandelwal S., Cipra R.J., Bolton J.S., Siegmund T. Adaptive Mechanical Properties of Topologically Interlocking Material Systems // Smart Mater. Struct. 2015. Vol. 24. No. 4. P. 045037.
  6. Feng Y., Siegmund T., Habtour E., Riddick J. Impact mechanics of topologically interlocked material assemblies // Intl. J. Impact Eng. 2015. Vol. 75. P. 140–149.
  7. Siegmund T., Barthelat F., Cipra R.J., Habtour E., Riddick J. Manufacture and Mechanics of Topologically Interlocked Material Assemblies // Applied Mechanics Reviews. 2016. Vol. 68.No. 4. P. 041401–1.
  8. Mather A., Cipra R.J., Siegmund T. Structural Integrity During Remanufacture of a Topologically Interlocked Material // Int. J. Struct. Integr. 2012. Vol. 3. No. 1. P. 61–78.
  9. Bayer J., Benzmúller C., Buzzard K., David M., Lamport L., Matiyasevich Y., Paulson L., Schleicher D., Stock B., Zelmanov E. Mathematical proof between generations. arXiv:2207.04779.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2024