Detection of phytopathogens on cotton seeds and their disinfection using aqueous solutions treated with low-temperature piezoelectric direct discharge plasma

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The effect of low-temperature plasma initiated by a piezoelectric direct discharge on biological and water-containing objects is a promising method for disinfecting planting material and regulating growth. The article shows that plasma-activated water created by this method significantly suppresses the activity of phytopathogens Xanthomonas citri pv. Malvacearum, Verticillium dahlia and Fusarium oxysporum f.sp. vasinfectum on cotton seeds. Phytopathogens were identified using real-time PCR and microscopy. A fluorescent method for detecting these phytopathogens has been developed for the effective use of aqueous solutions treated with low-temperature plasma in field conditions.

全文:

受限制的访问

作者简介

M. Ashurov

Institute of Nuclear Physics of the Academy of Sciences of the Republic of Uzbekistan

编辑信件的主要联系方式.
Email: ashurov49@mail.ru

Foreign Member of the RAS

 

乌兹别克斯坦, Ulugbek settlement, Tashkent

A. Glinushkin

Prokhorov General Physics Institute of the Russian Academy of Sciences; N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences

Email: ashurov49@mail.ru

Academician of the RAS

俄罗斯联邦, Moscow; Moscow

D. Zakharov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: ashurov49@mail.ru
俄罗斯联邦, Moscow

L. Kolik

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: ashurov49@mail.ru
俄罗斯联邦, Moscow

E. Konchekov

Prokhorov General Physics Institute of the Russian Academy of Sciences; Peoples’ Friendship University of Russia (RUDN University)

Email: eukmek@gmail.com
俄罗斯联邦, Moscow; Moscow

T. Matveeva

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: ashurov49@mail.ru
俄罗斯联邦, Moscow

R. Sarimov

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: rusa@kapella.gpi.ru
俄罗斯联邦, Moscow

N. Semenova

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: ashurov49@mail.ru
俄罗斯联邦, Moscow

D. Serov

Prokhorov General Physics Institute of the Russian Academy of Sciences; Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences

Email: ashurov49@mail.ru
俄罗斯联邦, Moscow; Pushchino, Moscow Region

S. Shumeiko

Prokhorov General Physics Institute of the Russian Academy of Sciences

Email: ashurov49@mail.ru
俄罗斯联邦, Moscow

D. Yanikin

Prokhorov General Physics Institute of the Russian Academy of Sciences; Federal Research Center Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Fundamental Problems of Biology of the Russian Academy of Sciences

Email: ashurov49@mail.ru
俄罗斯联邦, Moscow; Pushchino, Moscow Region

参考

  1. Рашидова Д.К., Амантуриев Ш.Б., Рашидова С.Ш. Применение нанополимерных препаратов в повышении урожайности сельскохозяйственных культур. Ташкент: Fan ziyosi, 2023. 254 с.
  2. Konchekov E.M., Gudkova V.V., Burmistrov D.E., Konkova A.S., Zimina M.A. et al. Bacterial decontamination of water-containing objects using piezoelectric direct discharge plasma and plasma jet // Biomolecules. 2024. V. 14. 181.
  3. Konchekov E.M., Kolik L.V., Danilejko Y.K., Belov S.V., Artem’ev K.V. et al. Enhancement of the plant grafting technique with dielectric barrier discharge cold atmospheric plasma and plasma-treated solution // Plants. 2022. V. 11. 1373.
  4. Belov S.V., Danyleiko Y.K., Glinushkin A.P., Kalinitchenko V.P., Egorov A.V. et al. An activated potassium phosphate fertilizer solution for stimulating the growth of agricultural plants // Front. Phys. 2021. V. 8. 618320.
  5. Ivanov V.E., Usacheva A.M., Chernikov A.V., Bruskov V.I., Gudkov S.V. Formation of long-lived reactive species of blood serum proteins induced by low-intensity irradiation of helium-neon laser and their involvement in the generation of reactive oxygen species // J. Photochem. Photobiol. B. 2017. V. 176. P. 36–43.
  6. Sharapov M.G., Novoselov V.I., Fesenko E.E., Bruskov V.I., Gudkov S.V. The role of peroxiredoxin 6 in neutralization of X-ray mediated oxidative stress: effects on gene expression, preservation of radiosensitive tissues and postradiation survival of animals // Free Radical Res. 2017. V. 51. № 2. P. 148–166.
  7. Wang X.Q., Allen T.W., Wang H., Peterson D.G., Nichols R.L. et al. Development of a qPCR Protocol to Detect the Cotton Bacterial Blight Pathogen, Xanthomonas citri pv. malvacearum, from Cotton Leaves and Seeds // Plant Disease. 2019. V. 103. № 3. P. 422–429.
  8. Atallah Z.K., Bae J., Jansky S.H., Rouse D.I., Stevenson W.R. Multiplex Real-Time Quantitative PCR to Detect and Quantify Verticillium dahliae Colonization in Potato Lines that Differ in response to Verticillium Wilt // Phytopathology. 2007. V. 97. № 7. P. 865–872.
  9. Abd-Elsalam K.A., Omar M.R., Migheli Q., Nirenberg H.I. Genetic characterization of Fusarium oxysporum f. sp. vasinfectum isolates by random amplification of polymorphic DNA (RAPD) and amplified fragment length polymorphism (AFLP) // J. Plant Diseases and Protection. 2004. V. 111. № 6. P. 534–544.
  10. Konchekov E.M., Gusein-zade N., Burmistrov D.E., Kolik L.V., Dorokhov A.S. et al. Advancements in Plasma Agriculture: A Review of Recent Studies // Int. J. Mol. Sci. 2023. V. 24. № 20. 15093.
  11. Gudkov S.V., Matveeva T.A., Sarimov R.M., Simakin A.V., Stepanova E.V. et al. Optical Methods for the Detection of Plant Pathogens and Diseases (Review) // AgriEngineering. 2023. V. 5. № 4. P. 1789–1812.
  12. Matveeva T.A., Sarimov R.M., Persidskaya O.K., Andreevskaya V.M., Semenova N.A. et al. Application of Fluorescence Spectroscopy for Early Detection of Fungal Infection of Winter Wheat Grains // AgriEngineering. 2024. V. 6. № 3. P. 3137–3158.
  13. Shcherbakov I.A. Current Trends in the Studies of Aqueous Solutions // Phys. Wave Phen. 2022. V. 30. P. 129–134.
  14. Lobyshev V.I. Water as a sensor of weak impacts on biological systems // Biophys. Rev. 2023. V. 15. P. 819–832.
  15. Gorlenko N.P., Laptev B.I., Sarkisov Y.S., Zhuravlev V.A., Sidorenko G.N. et al. The Role of Water and Aqueous Solutions in the Formation of Induction Periods of Hydration and Structure Formation of Cement Stone // Phys. Wave Phen. 2023. V. 31. P. 206–215.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Treatment with low-temperature plasma of a piezoelectric direct discharge: a – photograph of the external appearance of the “CAPKO” device (power supply and working devices with replaceable tips); b – photograph of water treatment with a plasma jet.

下载 (30KB)
3. Fig. 2. Fluorescence maps of the cotton seed surface before (a) and after (b) treatment with plasma-activated water of a piezoelectric direct discharge. Fluorescence intensity is shown by color change, the intensity scale is located on the right, expressed in relative units.

下载 (28KB)

版权所有 © Russian Academy of Sciences, 2025