Solution of longitudinal shear problems of physically nonlinear bodies with properties depending on the type of stress state
- 作者: Lomakin E.V.1, Korolkova O.P.1,2
-
隶属关系:
- Lomonosov Moscow State University
- Research Institute of Mechanics of Lomonosov Moscow State University
- 期: 卷 522, 编号 1 (2025)
- 页面: 58–64
- 栏目: МЕХАНИКА
- URL: https://modernonco.orscience.ru/2686-7400/article/view/689521
- DOI: https://doi.org/10.31857/S2686740025030094
- EDN: https://elibrary.ru/PVXXIP
- ID: 689521
如何引用文章
详细
Deformation properties of structural materials, rocks, composite materials, etc. depend on the type of external action, and the degree of this dependence is determined by the structural features of the materials. These materials are characterized by a relationship between volume and shear deformation. Deformation curves are nonlinear even at small deformations. This paper presents constitutive relations describing the nonlinear behavior of these materials under small deformations. It is shown that classical hypotheses of anti-plane shear cannot be applied. The problem of anti-plane shear of a long prismatic body with a square cross-section containing a round through hole in the plane of the cross-section is solved numerically. It is shown that under shear loading conditions, the body is characterized by a triaxial stress state and a change in volume.
全文:

作者简介
E. Lomakin
Lomonosov Moscow State University
编辑信件的主要联系方式.
Email: evlomakin@yandex.ru
Corresponding Member of the RAS
俄罗斯联邦, MoscowO. Korolkova
Lomonosov Moscow State University; Research Institute of Mechanics of Lomonosov Moscow State University
Email: ol.shendrigina@mail.ru
俄罗斯联邦, Moscow; Moscow
参考
- Lomakin E.V., Fedulov B.N. Nonlinear anisotropic elasticity for laminate composites // Meccanica. 2015. V. 50. P. 1527–1535. https://doi.org/10.1007/s11012-015-0104-5
- Fedulov B.N., Bondarchuk D.A., Lomakin E.V. Longitudinal elastic nonlinearity of composite material // Frattura ed Integrità Strutturale. 2024. V. 18. № 67. P. 311–318. https://doi.org/10.3221/IGF-ESIS.67.22
- Obid Š., Halilovič M., Urevc J., Starman B. Non-linear elastic tension–compression asymmetric anisotropic model for fibre-reinforced composite materials // Intern. J. Engineering Science. 2023. V. 185. 103829. https://doi.org/10.1016/j.ijengsci.2023.103829
- Smith E.W., Pascoe K.J. The role of shear deformation in the fatigue failure of a glass fibre-reinforced composite // Composites. 1977. V. 8. Iss. 4. P. 237–243. https://doi.org/10.1016/0010-4361(77)90109-4
- ASTM Standards: ASTM D3039/D3039M-14: Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials // ASTM International. 2014. https://doi.org/10.1520/D3039_D3039M-14
- Standard Test Method for Compressive Properties of Polymer Matrix Composite Materials Using a Combined Loading Compression (CLC) Test Fixture // ASTM International. 2016. ASTM D6641/D6641M-16e2. https://doi.org/10.1520/D6641_D6641M-16E01
- Standard Test Method for Young’s Modulus, Tangent Modulus, and Chord Modulus // ASTM International. 2017. ASTM E111-17. https://doi.org/10.1520/E0111-17
- Walsh J.B. The effect of cracks on the compressibility of rocks // J. Geophys. Res. 1965. V. 70. Iss. 2. P. 381–389. https://doi.org/10.1029/JZ070i002p00381
- Walsh J.B. The effect of cracks in rocks on the uniaxial elastic compression of rocks // J. Geophys. Res. 1965. V. 70. Iss. 2. P. 399–411. https://doi.org/10.1029/JZ070i002p00399
- Sun J.-Y., Zhu H.-Q., Qin S.-H., Yang D.-L., He X.-T. A review on the research of mechanical problems with different moduli in tension and compression // J. Mech. Sci. Technol. 2010. V. 24. P. 1845–1854. https://doi.org/10.1007/s12206-010-0601-3
- Rabotnov Y.N. Creep Problems in Structural Members. Amsterdam: North-Holland, 1969. 822 p. https://doi.org/10.1115/1.3408479
- Lomakin E.V. Mechanics of media with stress-state dependent properties // Physical Mesomechanics. 2007. V. 10. Iss. 5–6. P. 255–264. https://doi.org/10.1016/j.physme.2007.11.004
- Lomakin E., Korolkova O. Stress and strain fields near cracks in solids with stress state-dependent elastic properties under conditions of anti-plane shear // Acta Mechanica 2024. V. 235. P. 6585–6597. https://doi.org/10.1007/s00707-024-04034-6
- Ramberg W., Osgood W.R. Description of stress-strain curves by three parameters: Technical Report NACA-TN-902. 1943.
补充文件
