Research of annular nozzle thrust in the turbulent outflow condition

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

The results of calculations and measurements of the annular nozzle thrust force in a turbulent outflow regime of high-temperature combustion products are presented. Calculations are carried out on the basis of the Favre-averaged Navier–Stokes equations and the Boussinesq approximation for describing the processes of turbulent transfer. The analysis of exhaust nozzle form of annular device with internal deflector on the value of developed thrust is performed. By results of comparison of calculated and corresponding measured values of annular nozzle thrust it is performed validation of calculated model. It is established, that in the cavity of the inner deflector a “stationary” turbulent regime with high values of the turbulent transfer parameters is established.

Texto integral

Acesso é fechado

Sobre autores

V. Levin

Institute of Mechanics, Lomonosov Moscow State University; Institute for Automatics and Control Processes of the Far Eastern Branch of the Russian Academy of Sciences

Autor responsável pela correspondência
Email: afonina@imec.msu.ru

Academician of the RAS

Rússia, Moscow; Vladivostok

N. Afonina

Institute of Mechanics, Lomonosov Moscow State University

Email: afonina@imec.msu.ru
Rússia, Moscow

A. Khmelevsky

Institute of Mechanics, Lomonosov Moscow State University

Email: afonina@imec.msu.ru
Rússia, Moscow

Bibliografia

  1. Levin V.A., Afonina N.E., Gromov V.G., Manuylovich I.S., Khmelevsky A.N., Markov V.V. Spectra signals of gas pressure pulsations in annular and linear dual slotted nozzles // Combustion Science and Technology. 2019. V. 191. № 2. P. 339–352. https://doi.org/10.1080/00102202.2018.1467405
  2. Olsen M.E., Coakley T.J. The Lag Model, a Turbulence Model for Non Equilibrium Flows // 15th AIAA Computational Fluid Dynamics Conference. 2001. AIAA 2001–2564. https://doi.org/10.2514/6.2001-2564
  3. Wilcox D.C. Multiscale Model for Turbulent Flows // AIAA J. 1988. V. 26. № 11. P. 1311–1320. https://doi.org/10.2514/6.1986-29
  4. Левин В.А., Афонина Н.Е., Громов В.Г., Хмелевский А.Н. Численное исследование течения в кольцевом сопле на основе турбулентной модели // Доклады РАН. Физика, технические науки. 2022. Т. 503. № 1. С. 47–51. https://doi.org/10.31857/S2686740022020080I
  5. Favre A. Equations des gaz turbulents compressibles. Pt 1: Formes generals // Journal de Mecanique. 1965. V. 4. № 3. P. 361–390.
  6. Afonina N.E., Gromov V.G., Sakharov V.I. HIGHTEMP Technique for High Temperature Gas Flows Numerical Simulation // Proc. of the 5th European Symposium on Aerothermodynamics for Space Vehicles. Cologne, Germany. 8–11 November 2004. SP-563, February 2005. P. 323–328.
  7. Варнатц Ю., Маас У., Диббл Р. Горение. Физические и химические аспекты, моделирование, эксперименты, образование загрязняющих веществ. М.: Физматлит, 2003. 351 с.
  8. Левин В.А., Пережогин В.Н., Хмелевский А.Н. Особенности структуры течения продуктов сгорания в сферической полузамкнутой полости // ФГВ. 1995. Т. 31. № 1.С. 32–40.
  9. Левин В.А., Афонина Н.Е., Громов В.Г., Смехов Г.Д., Хмелевский А.Н., Марков В.В. Газодинамика и тяга выходного устройства реактивного двигателя с кольцевым соплом // ФГВ. 2012. Т. 48. № 4. С. 38–50.
  10. Иров Ю.Д., Кейль Э.В., Маслов Б.Н., Павлухин Ю.А., Породенко В.В., Степанов Е.А. Газодинамические функции. М.: Машиностроение, 1965. 400 с.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Simplified diagram of the gas-dynamic block of the experimental setup – IAT.

Baixar (20KB)
3. Fig. 2. Flow diagram and isolines of M numbers.

Baixar (26KB)
4. Fig. 3. Isolines of the Mach number

Baixar (18KB)
5. Fig. 4. Nozzle thrust force.

Baixar (18KB)
6. Fig. 5. Specific impulse of the nozzle.

Baixar (17KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025