Criterion for the laminar-turbulent transition onset in a compressible boundary layer

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

A criterion of the laminar-turbulent transition onset in a compressible boundary-layer flow is formulated on the base of Liepmann’ assumption according to which the critical condition is reached where the Reynolds stress (caused by the laminar oscillations) becomes equal to the shear stress of the base (undisturbed) flow. Comparison with known results of direct numerical simulations of disturbances propagating in the non-gradient boundary layers on flat plates and sharp cones at zero angle of attack showed that the criterion works well in a wide range of local Mach numbers (0 < Me < 7) for different mechanisms of the nonlinear breakdown of unstable waves.

Texto integral

Acesso é fechado

Sobre autores

I. Egorov

The Central Aerohydrodynamic Institute named after Proffesor N.E. Zhukovsky; Moscow Institute of Physics and Technology (National Research University)

Autor responsável pela correspondência
Email: ivan.egorov@tsagi.ru

Corresponding Member of the RAS

Rússia, Zhukovsky, Moscow Region; Dolgoprudny, Moscow Region

A. Fedorov

Moscow Institute of Physics and Technology (National Research University)

Email: ivan.egorov@tsagi.ru
Rússia, Dolgoprudny, Moscow Region

Bibliografia

  1. Morkovin M.V., Reshotko E., Herbert T. Transition in open flow systems: a reassessment // Bull. APS. 1994. V. 39. № 9. P. 1–31.
  2. Гапонов С.А., Маслов А.А. Развитие возмущений в сжимаемых потоках. Новосибирск: Наука, 1980. 143 c.
  3. Saric W.S., Reshotko E., Arnal D. Hypersonic laminar-Turbulent Transition // AGARD Advisory Report 319. Hypersonic Experimental and Computational Capability, Improvement and Validation. 1998. V. 2. P. 2-1–2-27.
  4. Fedorov A. Transition and Stability of High-Speed Boundary Layers // Annu. Rev. Fluid Mech. 2011. V. 43. P. 79–95.
  5. Hypersonic Boundary-Layer Transition Prediction // STO Technical Report TR-AVT-240. Aug. 2020.
  6. Cheng C., Chen X., Zhu W., Shyy W., Fu L. Progress in physical modeling of compressible wall-bounded turbulent flows // Acta Mech. Sin. 2024. V. 40. 323663.
  7. Zhong X., Wang X. Direct Numerical Simulation on the Receptivity, Instability, and Transition of Hypersonic Boundary Layers // Annu. Rev. Fluid Mech. 2012. V. 44. P. 527–561.
  8. Hefner J.N., Bushnell D.M. Application of Stability Theory to Laminar Flow Control // AIAA paper 79–1493. Jul. 1979. https://doi.org/10.2514/6.1979-1493
  9. Malik M.R. Boundary-layer transition prediction toolkit // AIAA paper 1997–1904. Jul. 1997. https://doi.org/10.2514/6.1997-1904
  10. Crouch J.D. Boundary-Layer Transition Prediction for Laminar Flow Control // AIAA paper 2015–2472. June 2015. https://doi.org/10.2514/6.2015-2472
  11. Mack L.M. Transition and laminar instability / NASA-CP-153203, Jet Propulsion Lab. Pasadena, Calif. May 15, 1977.
  12. Fedorov A.V. Applications of the Mack amplitude method to transition predictions in high-speed flows // NATO RTO-MP-AVT-200. 2012. P. 6-1–6-30.https://doi.org/10.14339/RTO-MP-AVT-200
  13. Fedorov A.V. Prediction and control of laminar-turbulent transition in high-speed boundary layer flows // Procedia IUTAM. 2015. V. 14. P. 3–14.
  14. Marineau E.C. Prediction Methodology for Second-Mode-Dominated Boundary-Layer Transition in Wind Tunnels // AIAA J. 2017. V. 55. № 2. P. 484–499.
  15. Marineau E.C., Grossir G., Wagner A., Leinemann M., Radespiel R., Tanno H., Chynoweth B.C., Schneider S.P., Wagnild R.M., Casper K.M. Analysis of Second-Mode Amplitudes on Sharp Cones in Hypersonic Wind Tunnels // J. Spacecr. Rockets. 2019. V. 56. № 2. P. 307–318. https://doi.org/10.2514/1.A34286
  16. Ustinov M.V. Progress in Development of Amplitude Method of Transition Prediction on Swept Wing // IUTAM Laminar Turbulent Transition. 9th IUTAM Symposium. London, UK. Sept 2–6. 2019. P. 71–83.
  17. Fedorov A.V., Kozlov M.V. Receptivity of High-Speed Boundary Layer to Solid Particulates // AIAA Paper 2011–3925. June 2011. https://doi.org/10.2514/6.2011-3925
  18. Borodulin V.I., Ivanov A.V., Kachanov Y.S., Crouch J.D., Ng L.L. Criteria of swept-wing boundary-layer transition and variable N-factor methods of transition prediction // International Conference on Methods of Aerophysical Research. June 30–July 6, 2014. Proc. / Ed. V.M. Fomin. Novosibirsk: Inst. Theor & Appl. Mech, 2014. Paper № 12. 10 p.
  19. Malik M.R., Li F., Choudhari M.M., Chang C.-L. Secondary instability of crossflow vortices and swept-wing boundary-layer transition // J. Fluid Mech. 1999. V. 399. P. 85–115.
  20. Liepmann H.W. Investigation of boundary layer transition on concave walls stability and transition on curved boundaries // NACA Wartime Report 4J28. Feb. 1945.
  21. Rist U., Fasel H. Direct numerical simulation of controlled transition in a flat-plate boundary layer // J. Fluid Mech. 1995. V. 298. P. 211–248.
  22. Zang T.A., Chang C.-L., Ng L.L. The transition prediction toolkit: LST, SIT, PSE, DNS, and LES // The Fifth Symposium on Numerical and Physical Aspects of Aerodynamic Flows. California State Univ. Jan. 1. 1992.
  23. Mayer C., von Terzi D., Fasel H. DNS of Complete Transition to Turbulence via Oblique Breakdown at Mach 3 // AIAA Paper 2008–4398. June 2008. https://doi.org/10.2514/6.2008-4398
  24. Sivasubramanian J., Fasel H. Direct Numerical Simulation of Controlled Transition In a Boundary Layer on a Sharp Cone at Mach 6 // AIAA Paper 2013–0263. Jan. 2013. https://doi.org/10.2514/6.2013-263
  25. Koevary C., Laible A., Mayer C., Fasel H. Numerical Simulations of Controlled Transition for a Circular Cone at Mach 8 // AIAA Paper 2010–4598. July 2010. https://doi.org/10.2514/6.2010-4598
  26. Fedorov A., Tumin A. The Mack’s amplitude method revisited // AIAA Paper 2021–0851. Jan. 2021. https://doi.org/10.2514/6.2021-0851

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Flow diagram and coordinate system.

Baixar (19KB)
3. Fig. 2. Temperature profiles T(y) (1) and velocity u(y) (2) of the undisturbed flow, as well as the Reynolds stress modulus ︱τ︱=0.5ρ︱urvr + uivi︱(3) and longitudinal velocity  ︱û︱(4) for the case of [22] (see Table 1). The dashed line corresponds to the critical point yc. The eigenfunction is normalized by the condition: the pressure disturbance on the wall, referred to the static pressure, is equal to pw/pe = 1.

Baixar (16KB)
4. Fig. 3. Critical coefficient Acr (Me) and its average value.

Baixar (16KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2025