CONTRIBUTION OF TEXTURE AND STRUCTURE TO THE FORMABILITY OF ALLOY SHEETS OF THE Al-Mg-Si SYSTEM

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

A modified Taylor model is proposed for quantitative evaluation of the formability parameter of sheets of metals and alloys - the normal anisotropy coefficient (NAC). The model takes into account the contribution of the crystallographic texture and structural anisotropy of the material under study. The model was used to predict the dependence of the NAC on the angle between the rolling and tension directions in the plane of the Al-Mg-Si alloy sheet. Good agreement was obtained between modeled and experimental values of the NAC.

About the authors

V. N Serebryany

Baikov Institute ofMetallurgy and Materials Science, Russian Academy of Sciences

Email: vns@imet.ac.ru
Moscow, Russia

A. S Kolyanova

Baikov Institute ofMetallurgy and Materials Science, Russian Academy of Sciences

Moscow, Russia

A. S Gordeev

Baikov Institute ofMetallurgy and Materials Science, Russian Academy of Sciences

Moscow, Russia

References

  1. Аверкиев Ю.А., Аверкиев А.Ю. Технология холодной штамповки. М.: Машиностроение, 1989. 304 с.
  2. Bunge H.J. Texture Analysis in Materials Science. Mathematical Methods. Gottingen: Cuvillier Verlag, 1993. 595 p.
  3. Park N.J., Klein H., Dahlem-Klein E. Program Systems: Physical Properties of Textured Materials. Gottingen: Cuvillier Verlag, 2001. 150 p.
  4. Van Houtte P., Li S., Seefeldt M., Delannay L. Deformation Texture Prediction: from the Taylor Model to the advanced Lamel Model // International JournalofPlasticity. 2005. V 21. P. 589-624. https://doi.org/10.1016/j.ijplas.2004.04.011
  5. Chen K.-X., Yan L.-Z., Zhang Y.-A., Li X.-W., Li Z.-H., Gao G.-J., Xiong B.-Q., Liu H.-W. Investigation of particles on the microstructure, texture and formability of Al-Mg-Si-Zn alloy for automotive body sheet //j. Mater. Sci. 2022. V. 57. P. 17779-17796. https://doi.org/10.1007/s10853-022-07716-5
  6. Helming K., Schwarzer R., Rauschenbach B., Geier S., Wenk H.-R., Ullemaier K., Heinitz J. Texture estimates by means of components // Z. Met. 1994. V 85. P. 545-553. https://doi.org/10.1515/ijmr-1994-850803
  7. Schaeben H. A Simple Standard Orientation Density Function: The Hyperspherical de la Vallée Poussin Kernel // Physica Status Solidi B. 1997. V. 200. P. 367-376. https://doi.org/10.1002/1521-3951(199704)200:2<367::AID-PSSB367>3.0.CO;2-I
  8. Ivanova T.M., Savelova T.I. Robust method of approximating the orientation distribution function by canonical normal distributions // The Physics of Metals and Metallography. 2006. V. 101. P. 114-118. https://doi.org/10.1134/S0031918X06020037
  9. Serebryany V.N. Plastic Anisotropy Prediction by Ultrasonic Texture Data // Texture and Microstructure. 1996. V. 25. P. 223-228.
  10. Delmas F., Majimel J., Vivas M., Molenat G., Couret A., Coujou A. Cross-slip and glide in 001 planes of Al-Mg-Si alloy 6056 // Phil. Mag. Letters. 2003. V. 83. P. 289-296. https://doi.org/10.1080/095008303100
  11. Caillard D., Martin J.-L. Glide of dislocations in nonoctahedral planes of fcc metals: a review // Int. J. Mat. Res. (formerly Z. Metallkd.) 2009. V. 100. № 10. P. 1403-1410. https://doi.org/10.3139/146.110190
  12. Colin J., Beauchamp P., Brochard S., Grilhe J., Coujou A. Non-linear elastic effects in plasticity: 100 dislocation gliding in aluminum-based alloy // EPL. 2007. V. 78. P. 16002 (p1-p4). https://doi.org/10.1209/0295-5075/78/16002
  13. Kocks U.F., Tome C.N., Wenk H.R. Texture and Anisotropy. Cambridge: Cambridge Univer. Press, 1998. 675 p.
  14. Serebryany V.N., Rokhlin L.L., Monina A.N. Texture and Anisotropy of Mechanical Properties of the Magnesium Alloy of Mg-Y-Gd-Zr System // Inorganic Materials: Applied Research. 2014. V. 5. № 2. P. 116-123. https://doi.org/10.1134/S207511331402018X
  15. Engler O., Schafer C., Runar Myhr O. Effect of natural ageing and pre-straining on strength and anisotropy in aluminium alloy AA 6016 // Materials Science & Engineering A. 2015. V. 639. P. 65-74. http://dx.doi.org/10.1016/j.msea.2015.04.097
  16. Engler O. Effect of precipitation state on plastic anisotropy in sheets of the age-hardenable aluminium alloys AA 6016 and AA 7021 // Materials Science & Engineering A. 2022. V. 830. 142324. https://doi.org/10.1016/j.msea.2021.142324

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Russian Academy of Sciences