SYMMETRIES OF THE CLASSICAL HEISENBERG MODEL

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The symmetries of the classical Heisenberg model are examined. It is shown that such symmetries are groups of conformal transformations and rotations. The invariance of vortex structures with respect to a group of rotations is studied. The application of the found transformations of the group of field rotations to the already known solutions of the Heisenberg model (such as instantons, vortex “targets” and “spirals”) generates other structures, which are also solutions of this model, with the properties being determined by the original structures.

Sobre autores

A. Borisov

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Science

Email: borisov@imp.uran.ru
Corresponding Member of the RAS Yekaterinburg, Russia

D. Dolgikh

M.N. Mikheev Institute of Metal Physics of the Ural Branch of the Russian Academy of Science

Yekaterinburg, Russia

Bibliografia

  1. Ибрагимов Н.Х. Группы преобразований в математической физике. М.: Наука, 1983. 280 с.
  2. Олвер П. Приложения групп Ли к дифференциальным уравнениям. М.: Мир, 1989. 639 с.
  3. Овсянников Л.В. Групповой анализ дифференциальных уравнений. М.: Наука, 1978. 400 с.
  4. Egorov R.F., Bostrem I.G., Ovchinnikov A.S. The variational symmetries and conservation laws in classical theory of Heisenberg (anti) ferromagnetic // Phys. Lett. A. 2002. V 292. N. 6. P. 325-334. https://doi.org/10.1016/S0375-9601(01)00813-1
  5. Курик М.В., Лаврентович О.Д. Дефекты в жидких кристаллах: гомотопическая теория и экспериментальные исследования // УФН. 1988. 154. № 3. С. 381-431. https://doi.org/10.3367/UFNr.0154.198803b.0381
  6. Борисов А.Б., Киселев В.В. Двумерные и трехмерные топологические дефекты, солитоны и текстуры в магнетиках. Т. 2. Топологические солитоны, двумерные и трехмерные “узоры”. М.: Физматлит, 2022. 456 с.
  7. Kosevich A.M., Ivanov B.A., Kovalev A.S. Magnetic Solitons // Phys. Rep. 1990. V. 194. N. 3-4. P. 117-238. https://doi.org/10.1016/0370-1573(90)90130-T
  8. Белавин А.А., Поляков А.М. Метастабильные состояния двумерного изотропного ферромагнетика // Письма в ЖЭТФ. 1975. Т. 22. № 10. С. 500-506.
  9. Зависимость расположения вихревых структур на плоскости от параметра для трансформированного инстантона, видеофильм. https://youtu.be/watch?v=pfmQ7lozw9I
  10. Борисов А.Б. Спиральные вихри в ферромагнетиках // ДАН. 2001. Т. 379. №3. С. 319-321.
  11. Борисов А.Б. Спиральные вихри в ферромагнетике // Письма в ЖЭТФ. 2001. Т. 73. № 5. С. 279-282.
  12. Byrd P.F., Friedman M.D. Handbook of Elliptic Integrals for Engineers and Scientists. N.Y., Heidelberg, B.: Springer-Verlag, 1971. 358 p.
  13. Зависимость компонента 3 трансформированной “мишени” от параметра , видеофильм. https://youtu.be/watch?v=cR-2KQnnd20
  14. Зависимость компонента 3 трансформированной “спирали” от параметра , видеофильм. https://youtu.be/watch?v=jXwVPLacug0

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2024