Adaptation of meristem strawberry plants in ex vitro conditions use of an Emistim

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The article presents data on the influence of the elicitor Emistim on the process of adaptation of meristem plants of garden strawberries to non-sterile conditions. The objects of the study were micropropagated strawberry plants of six industrial varieties: Asia (NF 421), Darselect, Florence, Honeoye, Kimberly, Syria (NF 137). The use of emistim solution at the stage of planting strawberry plants in vitro in non-sterile conditions made it possible to increase the yield of adapted plants for individual genotypes to 100%. The maximum yield of adapted plants was noted in the Florence variety with all methods and periods of exposure to Emistim. On average, for varieties, biometric indicators for all methods of treating plants with Emistim exceeded the control indicators, the adaptation period was reduced by 5-7 days. The maximum number of leaves after 30 days of adaptation was formed under the influence of Emistim within 1 hour (6.4 ± 0.3). The length of the roots after 30 days of cultivation exceeded the control indicators by 10–18%, after 40 days – by 15–25%. The optimal method of plant treatment can be considered soaking the basal part of strawberry rosettes in a solution of emistim for 1 hour. The possibility of enhancing the immunity of strawberry plants obtained in vitro at the stage of adaptation to non-sterile environmental conditions and during the period of growing with the help of a new generation preparation Emistim, which has a positive effect on their growth and development, was revealed. The results of the studies allow us to recommend this technology for use in the system of mass production of high-quality strawberry planting material.

Full Text

Restricted Access

About the authors

Olga V. Matsneva

Russian Research Institute of Fruit Crop Breeding

Author for correspondence.
Email: macneva@orel.vniispk.ru
Russian Federation, Zhilin village, Oryol region

Larisa V. Tashmatova

Russian Research Institute of Fruit Crop Breeding

Email: macneva@orel.vniispk.ru

PhD in Agricultural Science

Russian Federation, Zhilin village, Oryol region

Tatiana M. Khromova

Russian Research Institute of Fruit Crop Breeding

Email: macneva@orel.vniispk.ru

PhD in Biological Sciences

Russian Federation, Zhilin village, Oryol region

References

  1. Belyakova L.V., Vysockij V.A., Alekseenko L.V. Primenenie elisitorov pri klonal’nom mikrorazmnozhenii zemlyaniki // Plodovodstvo i yagodovodstvo Rossii. 2011. T. 26. S. 194–200.
  2. Doroshenko N.P., Puzyrnova V.G., Troshin L.P. Usovershenstvovanie tekhnologii klonal’nogo mikrorazmnozheniya vinograda // «Magarach». Vinogradarstvo i vinodelie. 2022. T. 24 (2). S. 102–111. https://doi.org/10.35547/ IM.2022.46.55.001
  3. Zhidekhina T.V. Rezul’taty primeneniya bioregulyatorov rosta cirkon, emistim i ekost na yagodnyh kul’turah // Mat. VIII mezhd. Simp. “Novye i netradicionnye rasteniya i perspektivy ih ispol’zovaniya”. Moskva, 22-26 iyunya 2009 g. T. 2. 2009. 547 s.
  4. Kashirskaya N.Ya., Cukanova E.M., Kochkina A.M. Primenenie preparatov iz gruppy immuno- i rostoregulyatorov v zashchite yabloni ot parshi // Plodovodstvo i yagodovodstvo Rossii. 2017. T. 48 (2). S. 144–147.
  5. Kuharchik N.V., Kastrickaya M.S., Semenas S.E., i dr. Razmnozhenie plodovyh rastenij v kul’ture in vitro / Pod obshch. red. N.V. Kuharchik. Minsk: Belaruskaya navuka. 2016. 208 s.
  6. Macneva O.V., Tashmatova L.V. Klonal’noe mikrorazmnozhenie zemlyaniki – perspektivnyj metod sovremennogo pitomnikovodstva (obzor) // Sovremennoe sadovodstvo. 2019. № 4. S. 113–119. https://doi.org/10.24411/2312-6701-2019-10411
  7. Macneva O.V., Tashmatova L.V., Hromova T.M. Biotekhnologicheskie priemy optimizacii mikroklonal’nogo razmnozheniya i adaptacii genotipov zemlyaniki sadovoj (Fragaria × ananassa Duch.) (metodicheskie rekomendacii). Orel. VNIISPK. 2021. 24 s.
  8. Prusakova L.D., Malevannaya N.N., Belopuhov S.N., Vakulenko V.V. Regulyatory rosta rastenij s antistressovymi i immunoprotektornymi svojstvami // Agrohimiya. 2005. № 11. S. 76–86.
  9. Hapova S.A., Mal’cev D.E. Effektivnoe ispol’zovanie regulyatorov rosta pri kul’tivirovanii remontantnyh i obychnyh sortov zemlyaniki v Yaroslavskoj oblasti // Plodovodstvo i yagodovodstvo Rossii. 2012. T. 30. S. 119–128.
  10. Bulgari R., Franzoni G., Ferrante A. Biostimulants Application in Horticultural Cropsunder Abiotic Stress Conditions // Agronomy. 2019. Vol. 9. P. 306. https://doi.org/10.3390/agronomy9060306 www.mdpi.com/journal/agronomy
  11. Dewir Y.H., Al-Ali A.M., Al-Obeed R.S. et al. Biological Acclimatization of Micropropagated Al-Taif Rose (Rosa damascena f. trigintipetala (Diek) R. Keller) Plants Using Arbuscular Mycorrhizal Fungi Rhizophagus fasciculatus // Horticulturae. 2024. Vol. 10. P. 1120. https://doi.org/10.3390/horticulturae10101120
  12. El Bakouri Z. E., Meziani R., Mazri M.A. et al. Production cost of tissue cultured date palm cv. Mejhoul in Morocco: a 10 year based agribusiness study// Plant Cell, Tissue and Organ Culture (PCTOC). 2023. Vol. 152. P. 405–416. https://doi.org/10.1007/s11240-022-02417-y
  13. Grzelak1 M., Pacholczak A., Nowakowska K. The effect of several growth regulators and biostimulants on biochemical and physiological changes in acclimation of micropropagated Echinacea purpurea Moench. ‘Raspberry Trufe’ // Plant Cell, Tissue and Organ Culture (PCTOC). 2024. Vol. 159. No. 22. P. 1–17. https://doi.org/10.1007/s11240-024-02869-4
  14. Krakhmaleva I.L., Molkanova O.I., Orlova N.D. et al. In Vitro Morpho-Anatomical and Regeneration Features of Cultivars of Actinidia kolomikta (Maxim.) Maxim. // Horticulturae. 2024. Vol. 10. P. 1335. https://doi.org/10.3390/horticulturae1012133
  15. Kumar D., Mahadev M., Sanjeev S. et al. Tissue Culture Approaches to Strawberries Improvement // Agryculture & Food: E-Newsletter. 2024. Vol. 06. I. 08. P. 362–368. https://www.researchgate.net/publication/384241244
  16. Mukherjee E., Gantait S. Strawberry biotechnology: A review on progress over past 10 years // Scientia Horticulturae. 2024. Vol. 4. No. 1. P. 113618. https://doi.org/10.1016/j.scienta.2024.113618
  17. Samarskaya V.O., Malaeva E.V., Postnova M.V. Aspects of clonal micropropagation and conservation of plants in vitro // Natural Systems and Resources. 2019. Vol. 9. No. 3. PP. 13–22. https://doi.org/10.15688/nsr.jvolsu.2019.3.2
  18. Sharma N., Kumar N., James J. et al. Strategies for successful acclimatization and hardening of in vitro regenerated plants: Challenges and innovations in micropropagation techniques // Plant Science Today (Early Access). 2023. https://doi.org/10.14719/pst.2376
  19. Soppelsa S., Kelderer M., Casera C. et al. Foliar Applications of Biostimulants Promote Growth, Yield and Fruit Quality of Strawberry Plants Grown under Nutrient Limitation // Agronomy. 2019. Vol. 9. P. 483. https://doi.org/10.3390/agronomy9090483
  20. Zydlik P., Zydlik Z., Kafkas N.E. The Effect of the Foliar Application of Biostimulants in a Strawberry Field Plantation on the Yield and Quality of Fruit, and on the Content of Health-Beneficial Substances // Agronomy. 2024. Vol. 14. P. 1786. https://doi.org/10.3390/agronomy1408178

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Height of Kimberly micro plants 30 days after treatment with Emistim: a – control; b – soaking for 1 hour; c – soaking for 2 hours; d – soaking for 5 hours; d – soil watering.

Download (83KB)
3. Fig. 2. The state of the root system of Kimberly plants 30 days after treatment with Emistim: a – control; b – soaking for 1 hour; c – soaking for 2 hours; d – soaking for 5 hours; d – soil watering.

Download (74KB)

Copyright (c) 2025 Russian Academy of Sciences

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.