Comparison of Homogeneous Anion-Exchange Membrane Based on Copolymer of N,N-Diallyl-N,N-dimethylammonium Chloride and Commercial Anion-Exchange Membranes in Electrodialysis Processing of Dilute Sodium Chloride Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

In this study, we investigated the electrodialysis process for treating a dilute sodium chloride solution using various anion exchange membranes – specifically, the commercial heterogeneous MA-41 and homogeneous Neosepta AMX, along with the experimental homogeneous membrane MA-1. We observed an increase in the desalting rate and the limiting current for the studied anion-exchange membranes in the series MA-41, MA-1, and AMX. We found that with commercial membranes, the decrease of the solution concnetration leads to the development of conjugated effects of concentration polarization. For the AMX membrane, useful mass transfer due to electroconvection increases, whereas for the MA-41 membrane, the flux of salt ions decreases due to the occurrence of the water dissociation reaction. For the MA-1 membrane, a decrease in the solution concentration leads to a transition of the system to the underlimiting current mode. This behavior may be associated with a significant contribution of equilibrium electroconvection to the process of ion transfer in dilute solutions in electromembrane systems with this membrane. Due to these differences in membrane properties, the mass transfer coefficients for the MA-1 membrane are higher compared to the AMX membrane at potential drops of 1 and 2 V. Our findings suggest that the most optimal operating mode for the MA-1 membrane is at a potential drop of 1 V in the electromembrane system, which results in a specific energy consumption of 0.24 kWh/mol. Contrastingly, under comparable conditions for the AMX membrane, the specific energy consumption is 0.34 kWh/mol.

Full Text

Restricted Access

About the authors

D. A. Bondarev

Kuban State University

Author for correspondence.
Email: bondarev.denis1992@outlook.com
Russian Federation, 350040, st. Stavropolskaya, 149, Krasnodar

A. A. Samoilenko

Kuban State University

Email: bondarev.denis1992@outlook.com
Russian Federation, 350040, st. Stavropolskaya, 149, Krasnodar

S. S. Mel’nikov

Kuban State University

Email: melnikov.stanislav@gmail.com
Russian Federation, 350040, st. Stavropolskaya, 149, Krasnodar

References

  1. Э.М. Балавадзе , О.В. Бобрешова, П.И. Кулинцов, Успехи химии, 57, 1031 (1988).
  2. H. Strathmann, Desalination, 264, 268 (2010). https://doi.org/10.1016/j.desal.2010.04.069
  3. P. Kumar, S.M. Rubinstein, I. Rubinstein, B. Zaltzman, Physical Review Research, 2, 033365 (2020). https://doi.org/10.1103/PhysRevResearch.2.033365
  4. L. Zhang, H. Jia, J. Wang, H. Wen, J. Li, J. Membr. Sci., 594, 117443, (2020) https://doi.org/10.1016/j.memsci.2019.117443
  5. V.V. Nikonenko, S.A. Mareev, N.D. Pis ’ menskaya, A.M. Uzdenova, A.V. Kovalenko, M.K. Urtenov, G. Pourcelly, Russ. J. Electrochem. 53, 1122 (2017). https://doi.org/10.1134/S1023193517090099
  6. V.A. Shaposhnik, V.I. Vasil’eva, D.B. Praslov, J. Membr. Sci., 101, 23 (1995). https://doi.org/10.1016/0376-7388(94)00270-9
  7. Y. Sano, X. Bai, S. Amagai, A. Nakayama, Desalination, 444, 151 (2018). https://doi.org/10.1016/j.desal.2018.01.034
  8. E.M. Akberova, V.I. Vasil’eva, V.I. Zabolotsky, L. Novak, J. Memb. Sci. 566, 317, (2018). https://doi.org/10.1016/j.memsci.2018.08.042
  9. N.A. Mishchuk, Colloids Surf. A Physicochem. Eng. Asp., 140, 75 (1998). https://doi.org/10.1016/S0927-7757(98)00216-7
  10. I. Rubinshtein, B. Zaltzman, J. Pretz, C. Linder, Russ. J. Electrochem., 38, 853 (2002). https://doi.org/10.1023/A:1016861711744
  11. V.I. Zabolotsky, A.V. Kovalenko, V.V. Nikonenko, M.H. Urtenov, K.A. Lebedev et al., Petroleum Chemistry, 57, 779 (2017). https://doi.org/10.1134/S0965544117090109
  12. V.I. Zabolotskiy, A.Y. But, V.I. Vasil ’ eva, E.M. Akberova, S.S. Melnikov, J. Membr. Sci. 526, 60 (2017). https://doi.org/10.1016/j.memsci.2016.12.028
  13. K.A. Nebavskaya, V.V. Sarapulova, K.G. Sabbatovskiy, V.D. Sobolev, et al., J. Membr. Sci., 523, 36 (2017). https://doi.org/10.1016/j.memsci.2016.09.038
  14. K.A. Nebavskaya, D.Y. Butylskii, I.A. Moroz, A.V. Nebavsky, N.D. Pismenskaya, V.V. Nikonenko, Petroleum Chemistry, 58, 780 (2018). https://doi.org/10.1134/S0965544118090086
  15. N.D. Pismenskaya, E.V. Pokhidnia, G. Pourcelly, V.V. Nikonenko, J. Membr. Sci., 566, 54 (2018). https://doi.org/10.1016/j.memsci.2018.08.055
  16. Bondarev D., Melnikov S., Zabolotskiy V. J. Membr. Sci., 675, 121510 (2023). https://doi.org/10.1016/j.memsci.2023.121510
  17. Y. Tanaka, M. Iwahashi, M. Kogure, J. Membr. Sci., 92, 217 (1994) https://doi.org/10.1016/0376-7388(94)00058-1.
  18. V.V. Nikonenko, A.G. Istoshin, M.Kh. Urtenov, V.I. Zabolotsky, C. Larchet, J. Benzaria, Desalination, 126, 207 (1999) https://doi.org/10.1016/S0011-9164(99)00176-9
  19. N.D. Pismenskaya, V.V. Nikonenko, N.A. Melnik, K.A. Shevtsova, E.I. Belova, G. Pourcelly, D. Cot, L. Dammak, C. Larchet, J. Phys. Chem. B. 116, 2145 (2012) https://doi.org/10.1021/jp2101896
  20. J.H. Choi, H.J. Lee, S.H. Moon, J. Colloid Interface Sci., 238, 188 (2001). https://doi.org/10.1006/jcis.2001.7510
  21. V.V. Nikonenko, N.D. Pismenskaya, E.I. Belova et al., Adv. Colloid Interface Sci., 160, 101 (2010). https://doi.org/10.1016/j.cis.2010.08.001

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Rice. 1. Scheme for the synthesis of a copolymer of N,N-diallyl-N,N-dimethylammonium chloride and ethyl methacrylate

Download (66KB)
3. Fig. 2. Schematic diagram of the experimental setup. 1–4 – containers with solutions; 5 – electrodialysis cell; 6 – pH sensor; 7 – conductivity sensor; 8 – capillaries connected to silver chloride electrodes; 9 and 10 – polarizing electrodes; A and K – auxiliary anion-exchange and cation-exchange membranes; * – membrane under study; EC – electrode chambers (I); BC – buffer chambers (II); KK – concentration chamber (III); KO – desalination chamber (IV).

Download (246KB)
4. Fig. 3. Volt-ampere characteristics of the studied anion-exchange membranes in a solution of 0.02 M (a) and 0.01 M (b) sodium chloride. 1 – AMX, 2 – MA-1, 3 – MA-41. The dashed line is the theoretical value of the limiting current, calculated using the Leveck equation.

Download (129KB)
5. Fig. 4. Kinetic dependences of sodium chloride concentration and pH in the desalination tract, obtained at different potential jumps for systems with AMX (a), MA-1 (b) and MA-41 (c) membranes. Filled markers – electrolyte concentration, hollow markers – pH in the desalination tract. Potential jump, V: 1 – 0.5, 2 – 1, 3 – 2.

Download (274KB)
6. Fig. 5. Dependence of the mass transfer coefficient on the electrolyte concentration in the desalination tract with a potential jump on the membrane under study and adjacent solutions of 0.5 V (a), 1 V (b) and 2 V (c). 1 – AMX, 2 – MA-1, 3 – MA-41.

Download (246KB)
7. Fig. 6. Volt-ampere characteristics of the MA-1 membrane, presented as a dependence of the dimensionless current density on the potential jump, obtained in sodium chloride solutions with a concentration of 1 – 0.02 M, 2 – 0.01 M.

Download (86KB)
8. Fig. 7. Integral specific energy consumption for the transfer of one mole of salt ions in the process of desalination of a sodium chloride solution from 0.02 M to 0.01 M.

Download (69KB)
9. Table 1 Fig 1.

Download (13KB)

Copyright (c) 2024 Russian Academy of Sciences