Removal of Acid Gases from Methane-Containing Gas Mixtures by Membrane-Assisted Gas Absorption. Hollow-Fibre Module Configuration with Absorption System Based on Dimethyldiethanolammonium Glycinate

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The present study is focused on continuing the development, improvement and optimisation of a new hybrid separation method – membrane-assisted gas absorption, which is designed for processing methane-containing gas mixtures, namely for the removal of acid gases. The second part is devoted to the design of absorbent solutions and their application in the proposed technology in order to improve the efficiency of acid gas removal and reduce hydrocarbon losses. Absorbents of acid gases based on aqueous solutions of methyldiethanolamine containing ionic liquid [M2E2A][Gly] have been proposed and investigated. As a result of the study, the optimal absorbent composition for further separation tests in a membrane-assisted gas absorption unit was determined. The efficiency of the process was investigated on the example of 8-component gas mixture containing methane, ethane, propane, n-butane, nitrogen, carbon dioxide, hydrogen sulfide and xenon. The membrane-assisted gas absorption unit demonstrated high efficiency of acid gas removal and high hydrocarbon recovery. The final efficiency of the investigated system with the new absorbent was up to 99 % for acid gas removal with hydrocarbon losses of up to 1 % at maximum capacity.

全文:

受限制的访问

作者简介

M. Atlaskina

Mendeleev University of Chemical Technology of Russia

Email: atlaskina.m.e@gmail.com
俄罗斯联邦, Moscow

A. Atlaskin

Mendeleev University of Chemical Technology of Russia

Email: atlaskina.m.e@gmail.com
俄罗斯联邦, Moscow

A. Petukhov

Mendeleev University of Chemical Technology of Russia; Lobachevsky State University of Nizhny Novgorod

Email: atlaskina.m.e@gmail.com
俄罗斯联邦, Moscow; Nizhny Novgorod

K. Smorodin

Mendeleev University of Chemical Technology of Russia

编辑信件的主要联系方式.
Email: atlaskina.m.e@gmail.com
俄罗斯联邦, Moscow

S. Kryuchkov

Mendeleev University of Chemical Technology of Russia

Email: atlaskina.m.e@gmail.com
俄罗斯联邦, Moscow

I. Vorotyntsev

Mendeleev University of Chemical Technology of Russia

Email: atlaskina.m.e@gmail.com
俄罗斯联邦, Moscow

参考

  1. Mendonça A.K. de S., de Andrade Conradi Barni G., Moro M.F., Bornia A.C., Kupek E., Fernandes L // Sustainable Production and Consumption. 2020. V. 22. P. 58–67.
  2. Smith C., Hill A.K., Torrente-Murciano L. // Energy and Environmental Science. 2020. V. 13. I. 2. P. 331–344.
  3. Pata U.K. // Renewable Energy. 2021. V. 173. P. 197–208.
  4. Ebrahimi A., Ziabasharhagh M. // Energy Conversion and Management. 2020. V. 209. № 112624.
  5. Xu D., Wu Q., Zhou B., Li C., Bai L., Huang S. // IEEE Transactions on Sustainable Energy. 2020. V. 11. I. 4. P. 2457–2469.
  6. Tcvetkov P., Cherepovitsyn A., Makhovikov A. // Energy Reports. 2020. V. 6. P. 391–402.
  7. Azam A., Rafiq M., Shafique M., Zhang H., Yuan J. // Energy. 2021. V. 219. № 119592.
  8. Wright R.F., Lu P., Devkota J., Lu F., Ziomek-Moroz M., Ohodnicki P.R. // Sensors (Switzerland). 2019. V. 19. I. 18. № 3964.
  9. Karthigaiselvan K., Panda R.C. // Journal of Natural Gas Science and Engineering. 2021. V. 95. № 104087.
  10. Harrigan D.J., Lawrence J.A., Reid H.W., Rivers J.B., O’Brien J.T., Sharber S.A., Sundell B.J. // Journal of Membrane Science. 2020. V. 602. № 117947.
  11. Jasim D., Mohammed T., Abid M. // Engineering and Technology Journal. 2022. V. 40. I. 3. P. 441–450.
  12. Gupta N.K., Achary S.N., Viltres H., Bae J., Kim K.S. // Scientific Reports. 2023. V. 13. I. 1. № 2330.
  13. Zhang W., Garg N., Peter Andersson M., Chen Q., Zhang B., Gani R., Mansouri S.S. // Separation and Purification Technology. 2022. V. 286. № 120436.
  14. Jahandar Lashaki M., Khiavi S., Sayari A. // Chemical Society Reviews. 2019. V. 48. I. 12. P. 3320–3405.
  15. Mukhtar A., Saqib S., Mellon N.B., Babar M., Rafiq S., Ullah S., Bustam M.A., Al-Sehemi A.G., Muhammad N., Chawla M. // Journal of Natural Gas Science and Engineering. 2020. V. 77. № 103203.
  16. Abd A.A., Naji S.Z., Hashim A.S., Othman M.R. // Journal of Environmental Chemical Engineering. 2020. V. 8. I. 5. № 104142.
  17. Siegelman R.L., Milner P.J., Kim E.J., Weston S.C., Long J.R. // Energy and Environmental Science. 2019. V. 12. I. 7. P. 2161–2173.
  18. Калмыков Д.О., Широких С.А., Матвеев Д.Н., Анохина Т.С., Баженов С.Д. // Мембраны и мембранные технологии. 2023. Т. 13. С. 380
  19. Алентьев А.Ю., Волков А.В., Воротынцев И.В., Максимов А.Л., Ярославцев А.Б. // Мембраны и мембранные технологии. 2023. Т. 11. С. 283
  20. Mulk W.U., Ali S.A., Shah S.N., Shah M.U.H., Zhang Q.J., Younas M., Fatehizadeh A., Sheikh M., Rezakazemi M. // Journal of CO2 Utilization. 2023. V. 75. № 102555.
  21. Sun W., Wang M., Zhang Y., Ding W., Huo F., Wei L., He H. // Green Energy and Environment. 2020. V. 5. I. 2. P. 183–194.
  22. Lian S., Song C., Liu Q., Duan E., Ren H., Kitamura Y. // Journal of Environmental Sciences (China). 2021. V. 99. P. 281–295.
  23. Liu Y., Dai Z., Zhang Z., Zeng S., Li F., Zhang X., Nie Y., Zhang L., Zhang S., Ji X. // Green Energy and Environment. 2021. V. 6. I. 3. P. 314–328.
  24. Kazarina O. V., Petukhov A.N., Nagrimanov R.N., Vorotyntsev A. V., Atlaskina M.E., Atlaskin A.A., Kazarin A.S., Golovacheva A.A., Markin Z.A., Markov A.N., Barysheva A. V., Vorotyntsev I. V. // Journal of Molecular Liquids. 2023. V. 373. № 121216.
  25. Pishnamazi M., Nakhjiri A.T., Taleghani A.S., Marjani A., Heydarinasab A., Shirazian S. // Journal of Molecular Liquids. 2020. V. 314. № 113635.
  26. Daryayehsalameh B., Nabavi M., Vaferi B. // Environmental Technology and Innovation. 2021. V. 22. № 101484.
  27. Chen F.-F., Huang K., Fan J.-P., Tao D.-J. // AIChE Journal. 2017. V. 64. I. 2. P. 632–639.
  28. Sistla Y.S., Khanna A. // Chemical Engineering Journal. 2015. V. 273. I. September. P. 268–276.
  29. Yim J.H., Ha S.J., Lim J.S. // Journal of Supercritical Fluids. 2018. V. 138. P. 73–81.
  30. Noorani N., Mehrdad A. // Fluid Phase Equilibria. 2020. V. 517. P. 112591.
  31. Petukhov A.N., Atlaskin A.A., Kryuchkov S.S., Smorodin K.A., Zarubin D.M., Petukhova A.N., Atlaskina M.E., Nyuchev A. V., Vorotyntsev A. V., Trubyanov M.M., Vorotyntsev I. V., Vorotynstev V.M. // Chemical Engineering Journal. 2021. V. 421. № 127726.
  32. Atlaskin A.A., Kryuchkov S.S., Smorodin K.A., Markov A.N., Kazarina O. V., Zarubin D.M., Atlaskina M.E., Vorotyntsev A. V., Nyuchev A. V., Petukhov A.N., Vorotyntsev I. V. // Separation and Purification Technology. 2021. V. 257. № 117835.
  33. Atlaskin A.A., Kryuchkov S.S., Yanbikov N.R., Smorodin K.A., Petukhov A.N., Trubyanov M.M., Vorotyntsev V.M., Vorotyntsev I. V. // Separation and Purification Technology. 2020. V. 239. № 116578.
  34. Petukhov A.N., Atlaskin A.A., Smorodin K.A., Kryuchkov S.S., Zarubin D.M., Atlaskina M.E., Petukhova A.N., Stepakova A.N., Golovacheva A.A., Markov A.N., Stepanova E.A., Vorotyntsev A. V., Vorotyntsev I. V. // Polymers. 2022. V. 14. I. 11. № 2214.
  35. Сырцова Д.А., Шалыгин М.Г., Тепляков В.В., Palanivelu K., Зиновьев А.В., Пискарев М.С., Кузнецов А.А. // Мембраны и мембранные технологии. 2021. Т. 11. С. 48.
  36. Atlaskina, M. E., Kazarina, O. V., Petukhov, A. N., Atlaskin, A. A., Tsivkovsky, N. S., Tiuleanu, P., Malysheva Y.B., Lin, H., Zhong, G., Lukoyanov A.N., Vorotyntsev A. V., Vorotyntsev, I. V. // Journal of Molecular Liquids. 2024. V. 395. № 123635.
  37. Fu D., Zhang P., Mi C. L. // Energy. 2016. V. 101. P. 288–295.
  38. Othmer D. F., Thakar M. S. // Ind. amp; Eng. Chem. 1953. V. 45. I. 3. P. 589-593.
  39. Barzagli F., Lai S., Mani F. // ChemSusChem. 2015. V. 8. – I. 1. P. 184-191.
  40. Zhang F., Ma J.W, Zhou Z., Wu Y.T, Zhang Z.B. // J. Chem. Eng. 2012. V. 181. P. 222–228.
  41. Ahmady A., Hashim M.A., Aroua M.K. // Chemical engineering journal. 2011. V. 172. I. 2–3. P. 763–770.
  42. Cullinane J. T., Rochelle G. T. // Ind. Eng. Chem. Res. 2006. V. 45. I. 8. P. 2531–2545.
  43. Arachchige U. S. P. R., Aryal N., Eimer D. A., Melaaen, M. C. // Annu. trans. Nord. Rheol. Soc. 2013. V. 21. P. 299.
  44. Fu D., Zhang P., Wang L. M. //Energy. 2016. V. 113. P. 1–8.
  45. Sun, C., Wen, S., Zhao, J., Zhao, C., Li, W., Li, S., & Zhang, D. // Energy & Fuels. 2016. V 31. I. 11. P. 12425–12433.
  46. Friess K., Izák P., Kárászová M., Pasichnyk M., Lanč M., Nikolaeva D., Luis P., Jansen J. // Membranes. 2021. V. 11. I. 2. P. 97.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. 1H NMR spectrum of [M2E2A][Gly]

下载 (475KB)
3. Fig. 2. Principle scheme of the installation for determination of gas transport characteristics of the membrane in conjunction with a mass spectrometer. РРГ - gas flow regulator, РДГ - gas pressure regulator, ИРЖ - liquid flow meter

下载 (3MB)
4. Fig. 3. Principle scheme of the experimental installation for experimental evaluation of the membrane-absorption gas separation module efficiency. 1, 2 - gas flow regulators; 3, 4 - pressure transducers; 5 - upstream gas pressure regulator; 6 - four-port switching tap; 7 - gas chromatograph

下载 (797KB)
5. Fig. 4. Schematic diagram of the membrane gas separation cell

下载 (436KB)
6. Fig. 5. Dependence of the sorption capacity of aqueous solutions of MDEA with different content of ILs with respect to CO2 on the saturation time: 0%–20% [33], 30% – this work

下载 (328KB)
7. Fig. 6. Dependence of solution viscosity on the mass fraction of [M2E2A][Gly]

下载 (165KB)
8. Fig. 7. Effect of the mass fraction of amines on the sorption capacity and viscosity of aqueous solutions of MDEA a) dependence of the sorption capacity of aqueous solutions of MDEA on the mass fraction of amines (MDEA+IL); b) dependence of the viscosity of aqueous solutions of MDEA on the mass fraction of amines (MDEA+IL)

下载 (361KB)
9. Fig. 8. Dependence of methane content in the retentate stream on the value of the extraction fraction

下载 (120KB)
10. Fig. 9. Dependence of ethane, propane and butane content in the retentate stream on the value of extraction fraction

下载 (172KB)
11. Fig. 10. Dependence of nitrogen content in the retentate stream on the value of extraction fraction

下载 (110KB)
12. Fig. 11. Dependence of xenon content in the retentate stream on the value of the extraction fraction

下载 (97KB)
13. Fig. 12. Dependence of the content of carbon dioxide and hydrogen sulphide in the retentate stream on the value of the withdrawal fraction

下载 (155KB)

版权所有 © Russian Academy of Sciences, 2024