Therapeutic Potential of CRISPR/Cas in Hashimoto's Thyroiditis: A Comprehensive Review


Cite item

Full Text

Abstract

Hashimoto’s thyroiditis (HT) is a commonly occurring illness of autoimmune endocrine origin. It is usually present in the pediatric age group along with other well-known diseases, such as type 1 insulin-dependent diabetes. The defining feature of this disease is the immune-- mediated attack on the thyroid gland resulting in the destruction of thyroid tissues and cells. Given that HT frequently affects family members, it is well-recognized that individuals are genetically predisposed to this disease. Patients with HT also display a significantly increased risk for several different cancers, justifying the eminent need for the development of therapies for managing and treating HT. Gene editing has made several advancements in the field of molecular biology and has turned out to become a promising approach to correct several autoimmune diseases. Currently, CRISPR/Cas, a nuclease-based editing technique, is publicized as a promising tool for curing several genetic diseases and cancers. However, very limited research has been conducted as of now on autoimmune disease management and cure via CRISPR/Cas technique. This review provides an account of the potential candidate genes associated with Hashimoto’s thyroiditis, and only a few animal and human models have been generated via the CRISPR/Cas gene editing technique. Mouse models of autoimmune thyroiditis generated through the CRISPR/Cas gene editing technique by targeting the candidate genes will provide us with a deeper insight into the pathophysiology of HT and further pave the way for the immunomodulation of HT via gene editing.

About the authors

Apoorva Upreti

Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus

Email: info@benthamscience.net

Sayali Mukherjee

Amity Institute of Biotechnology, Amity University Uttar Pradesh Lucknow Campus

Author for correspondence.
Email: info@benthamscience.net

References

  1. Kisielow P. How does the immune system learn to distinguish between good and evil? The first definitive studies of T cell central tolerance and positive selection. Immunogenetics 2019; 71(8-9): 513-8. doi: 10.1007/s00251-019-01127-8 PMID: 31418051
  2. Cashman KS, Jenks SA, Woodruff MC, et al. Understanding and measuring human B-cell tolerance and its breakdown in autoimmune disease. Immunol Rev 2019; 292(1): 76-89. doi: 10.1111/imr.12820 PMID: 31755562
  3. Pisetsky DS. Pathogenesis of autoimmune disease. Nat Rev Nephrol 2023; 19(8): 509-24. doi: 10.1038/s41581-023-00720-1 PMID: 37165096
  4. Kalarani IB, Veerabathiran R. Impact of iodine intake on the pathogenesis of autoimmune thyroid disease in children and adults. Ann Pediatr Endocrinol Metab 2022; 27(4): 256-64. doi: 10.6065/apem.2244186.093 PMID: 36567462
  5. Pyzik A, Grywalska E, Matyjaszek-Matuszek B, Roliński J. Immune disorders in Hashimoto’s thyroiditis: What do we know so far? J Immunol Res 2015; 2015
  6. Hiromatsu Y, Satoh H, Amino N. Hashimoto’s thyroiditis: History and future outlook. Hormones 2013; 12(1): 12-8. doi: 10.1007/BF03401282 PMID: 23624127
  7. Radetti G. Clinical aspects of Hashimoto’s thyroiditis. Endocr Dev 2014; 26: 158-70. doi: 10.1159/000363162 PMID: 25231451
  8. Ralli M, Angeletti D, Fiore M, et al. Hashimoto’s thyroiditis: An update on pathogenic mechanisms, diagnostic protocols, therapeutic strategies, and potential malignant transformation. Autoimmun Rev 2020; 19(10): 102649. doi: 10.1016/j.autrev.2020.102649 PMID: 32805423
  9. Hu X, Wang X, Liang Y, et al. Cancer risk in hashimoto’s thyroiditis: A systematic review and meta-analysis. Front Endocrinol 2022; 13: 937871. doi: 10.3389/fendo.2022.937871 PMID: 35903279
  10. Vanderpump M.P. Epidemiology of thyroid disorders. In: The thyroid and its diseases: A comprehensive guide for the clinician. Cham Springer 2019; pp. 75-85. doi: 10.1007/978-3-319-72102-6_6
  11. Atia A, Alathream R, Al-Deib A. Incidence of hashimoto thyroiditis among libyans: A retrospective epidemiological study. J Med Res Innov 2021; 5(1): e000251. doi: 10.32892/jmri.251
  12. Philippe C, Moineau S. The endless battle between phages and CRISPR-Cas systems in Streptococcus thermophilus. Biochem Cell Biol 2021; 99(4): 397-402. doi: 10.1139/bcb-2020-0593 PMID: 33534660
  13. Garcia-Robledo JE, Barrera MC, Tobón GJ. CRISPR/Cas: From adaptive immune system in prokaryotes to therapeutic weapon against immune-related diseases. Int Rev Immunol 2020; 39(1): 11-20. doi: 10.1080/08830185.2019.1677645 PMID: 31625429
  14. Koonin EV, Makarova KS. Origins and evolution of CRISPR-Cas systems. Philos Transac R Soci B 1772; 374(1772): 20180087.
  15. Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol 2017; 37: 67-78. doi: 10.1016/j.mib.2017.05.008 PMID: 28605718
  16. Jiang F, Doudna JA. CRISPR–Cas9 structures and mechanisms. Annu Rev Biophys 2017; 46(1): 505-29. doi: 10.1146/annurev-biophys-062215-010822 PMID: 28375731
  17. Lee MH, Shin JI, Yang JW, et al. Genome editing using CRISPR- Cas9 and autoimmune diseases: A comprehensive review. Int J Mol Sci 2022; 23(3): 1337. doi: 10.3390/ijms23031337 PMID: 35163260
  18. Williams D, Le S, Godlewska M, Hoke D, Buckle A. Thyroid peroxidase as an autoantigen in Hashimoto’s disease: Structure, function, and antigenicity. Horm Metab Res 2018; 50(12): 908-21. doi: 10.1055/a-0717-5514 PMID: 30360003
  19. Luty J, Ruckemann-Dziurdzińska K, Witkowski JM, Bryl E. Immunological aspects of autoimmune thyroid disease - Complex interplay between cells and cytokines. Cytokine 2019; 116: 128-33. doi: 10.1016/j.cyto.2019.01.003 PMID: 30711852
  20. Farh KKH, Marson A, Zhu J, et al. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 2015; 518(7539): 337-43. doi: 10.1038/nature13835 PMID: 25363779
  21. Ragusa F, Fallahi P, Elia G, et al. Hashimotos’ thyroiditis: Epidemiology, pathogenesis, clinic and therapy. Best Pract Res Clin Endocrinol Metab 2019; 33(6): 101367. doi: 10.1016/j.beem.2019.101367 PMID: 31812326
  22. Guo Y, Zynat JZ, Xing S, et al. Immunological changes of T helper cells in flow cytometer-sorted CD4+ T cells from patients with Hashimoto’s thyroiditis. Exp Ther Med 2018; 15(4): 3596-602. doi: 10.3892/etm.2018.5825 PMID: 29556254
  23. Wang Y, Fang S, Zhou H. Pathogenic role of Th17 cells in autoimmune thyroid disease and their underlying mechanisms. Best Pract Res Clin Endocrinol Metab 2023; 37(2): 101743. doi: 10.1016/j.beem.2023.101743 PMID: 36841747
  24. Li D, Cai W, Gu R, et al. Th17 cell plays a role in the pathogenesis of Hashimoto’s thyroiditis in patients. Clin Immunol 2013; 149(3): 411-20. doi: 10.1016/j.clim.2013.10.001 PMID: 24211715
  25. Ferrari SM, Fallahi P, Elia G, et al. Novel therapies for thyroid autoimmune diseases: An update. Best Pract Res Clin Endocrinol Metab 2020; 34(1): 101366. doi: 10.1016/j.beem.2019.101366 PMID: 31813786
  26. Pezzano M. MIG in autoimmune thyroiditis: review of the literature. Clin Ter 2019; 170(4): e295-300. PMID: 31304519
  27. Song J, Sun R, Zhang Y, Fu Y, Zhao D. Role of the specialized pro-resolving mediator resolvin D1 in hashimotoʼs thyroiditis. Exp Clin Endocrinol Diabetes 2021; 129(11): 791-7. doi: 10.1055/a-1345-0173 PMID: 33465800
  28. Xiao H, Liang J, Liu S, et al. Proteomics and organoid culture reveal the underlying pathogenesis of hashimoto’s thyroiditis. Front Immunol 2021; 12: 784975. doi: 10.3389/fimmu.2021.784975 PMID: 34925365
  29. Xiao ZX, Miller JS, Zheng SG. An updated advance of autoantibodies in autoimmune diseases. Autoimmun Rev 2021; 20(2): 102743. doi: 10.1016/j.autrev.2020.102743 PMID: 33333232
  30. Bai X, Huang M, Chen X, et al. Microarray profiling and functional analysis reveal the regulatory role of differentially expressed plasma circular RNAs in Hashimoto’s thyroiditis. Immunol Res 2022; 70(3): 331-40. doi: 10.1007/s12026-021-09241-0 PMID: 35064448
  31. Lu X, Sun J, Liu T, Zhang H, Shan Z, Teng W. Changes in histone H3 lysine 4 trimethylation in Hashimoto’s thyroiditis. Arch Med Sci 2019; 18(1): 153-63. doi: 10.5114/aoms.2019.85225 PMID: 35154536
  32. Tagoe CE, Sheth T, Golub E, Sorensen K. Rheumatic associations of autoimmune thyroid disease: A systematic review. Clin Rheumatol 2019; 38(7): 1801-9. doi: 10.1007/s10067-019-04498-1 PMID: 30927115
  33. Yoo WS, Chung HK. Recent advances in autoimmune thyroid diseases. Endocrinol Metab 2016; 31(3): 379-85. doi: 10.3803/EnM.2016.31.3.379 PMID: 27586448
  34. Danailova Y, Velikova T, Nikolaev G, et al. Nutritional management of thyroiditis of Hashimoto. Int J Mol Sci 2022; 23(9): 5144. doi: 10.3390/ijms23095144 PMID: 35563541
  35. Jia X, Zhai T, Qu C, et al. Metformin reverses hashimoto’s thyroiditis by regulating key immune events. Front Cell Dev Biol 2021; 9: 685522. doi: 10.3389/fcell.2021.685522 PMID: 34124070
  36. Ghosh D, Venkataramani P, Nandi S, Bhattacharjee S. CRISPR–Cas9 a boon or bane: The bumpy road ahead to cancer therapeutics. Cancer Cell Int 2019; 19(1): 12. doi: 10.1186/s12935-019-0726-0 PMID: 30636933
  37. Zhang F, Cheng D, Wang S, Zhu J. Crispr/Cas9-mediated cleavages facilitate homologous recombination during genetic engineering of a large chromosomal region. Biotechnol Bioeng 2020; 117(9): 2816-26. doi: 10.1002/bit.27441 PMID: 32449788
  38. Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157(6): 1262-78. doi: 10.1016/j.cell.2014.05.010 PMID: 24906146
  39. Kosicki M, Tomberg K, Bradley A. Repair of double-strand breaks induced by CRISPR–Cas9 leads to large deletions and complex rearrangements. Nat Biotechnol 2018; 36(8): 765-71. doi: 10.1038/nbt.4192 PMID: 30010673
  40. Vogt A, He Y. Structure and mechanism in non-homologous end joining. DNA Repair 2023; 130: 103547. doi: 10.1016/j.dnarep.2023.103547 PMID: 37556875
  41. Amer MH. Gene therapy for cancer: present status and future perspective. Mol Cell Ther 2014; 2(1): 27. doi: 10.1186/2052-8426-2-27 PMID: 26056594
  42. Li C, Samulski RJ. Engineering adeno-associated virus vectors for gene therapy. Nat Rev Genet 2020; 21(4): 255-72. doi: 10.1038/s41576-019-0205-4 PMID: 32042148
  43. Gruntman AM, Flotte TR. The rapidly evolving state of gene therapy. FASEB J 2018; 32(4): 1733-40. doi: 10.1096/fj.201700982R PMID: 31282760
  44. Go DE, Stottmann RW. The impact of CRISPR/Cas9-based genomic engineering on biomedical research and medicine. Curr Mol Med 2016; 16(4): 343-52. doi: 10.2174/1566524016666160316150847 PMID: 26980700
  45. Uddin F, Rudin CM, Sen T. CRISPR gene therapy: Applications, limitations, and implications for the future. Front Oncol 2020; 10: 1387. doi: 10.3389/fonc.2020.01387 PMID: 32850447
  46. Zhao K, Hu Y. Microbiome harbored within tumors: A new chance to revisit our understanding of cancer pathogenesis and treatment. Signal Transduct Target Ther 2020; 5(1): 136. doi: 10.1038/s41392-020-00244-1 PMID: 32728023
  47. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 2012; 337(6096): 816-21.
  48. Nidhi S, Anand U, Oleksak P, et al. Novel CRISPR-Cas systems: An updated review of the current achievements, applications, and future research perspectives. Int J Mol Sci 2021; 22(7): 3327. doi: 10.3390/ijms22073327 PMID: 33805113
  49. Li T, Yang Y, Qi H, et al. CRISPR/Cas9 therapeutics: Progress and prospects. Signal Transduct Target Ther 2023; 8(1): 36. doi: 10.1038/s41392-023-01309-7 PMID: 36646687
  50. Hochstrasser ML, Doudna JA. Cutting it close: CRISPR-associated endoribonuclease structure and function. Trends Biochem Sci 2015; 40(1): 58-66. doi: 10.1016/j.tibs.2014.10.007 PMID: 25468820
  51. Makarova KS, Wolf YI, Iranzo J, et al. Evolutionary classification of CRISPR–Cas systems: A burst of class 2 and derived variants. Nat Rev Microbiol 2020; 18(2): 67-83. doi: 10.1038/s41579-019-0299-x PMID: 31857715
  52. Gleditzsch D, Pausch P, Müller-Esparza H, et al. PAM identification by CRISPR-Cas effector complexes: Diversified mechanisms and structures. RNA Biol 2019; 16(4): 504-17. doi: 10.1080/15476286.2018.1504546 PMID: 30109815
  53. Seki A, Rutz S. Optimized RNP transfection for highly efficient CRISPR/Cas9-mediated gene knockout in primary T cells. J Exp Med 2018; 215(3): 985-97. doi: 10.1084/jem.20171626 PMID: 29436394
  54. Sternberg SH, Redding S, Jinek M, Greene EC, Doudna JA. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 2014; 507(7490): 62-7. doi: 10.1038/nature13011 PMID: 24476820
  55. Li B, Niu Y, Ji W, Dong Y. Strategies for the CRISPR-based therapeutics. Trends Pharmacol Sci 2020; 41(1): 55-65. doi: 10.1016/j.tips.2019.11.006 PMID: 31862124
  56. Collias D, Beisel CL. CRISPR technologies and the search for the PAM-free nuclease. Nat Commun 2021; 12(1): 555. doi: 10.1038/s41467-020-20633-y PMID: 33483498
  57. Kleinstiver BP, Prew MS, Tsai SQ, et al. Engineered CRISPR- Cas9 nucleases with altered PAM specificities. Nature 2015; 523(7561): 481-5. doi: 10.1038/nature14592 PMID: 26098369
  58. Walton RT, Christie KA, Whittaker MN, Kleinstiver BP. Unconstrained genome targeting with near-PAMless engineered CRISPR- Cas9 variants. Science 2020; 368(6488): 290-6. doi: 10.1126/science.aba8853 PMID: 32217751
  59. Guo C, Ma X, Gao F, Guo Y. Off-target effects in CRISPR/Cas9 gene editing. Front Bioeng Biotechnol 2023; 11: 1143157. doi: 10.3389/fbioe.2023.1143157 PMID: 36970624
  60. Frock RL, Hu J, Meyers RM, Ho YJ, Kii E, Alt FW. Genome-wide detection of DNA double-stranded breaks induced by engineered nucleases. Nat Biotechnol 2015; 33(2): 179-86. doi: 10.1038/nbt.3101 PMID: 25503383
  61. Mortensen R, Nissen TN, Blauenfeldt T, Christensen JP, Andersen P, Dietrich J. Adaptive immunity against Streptococcus pyogenes in adults involves increased IFN-γ and IgG3 responses compared with children. J Immunol 2015; 195(4): 1657-64. doi: 10.4049/jimmunol.1500804 PMID: 26163588
  62. Chew WL, Tabebordbar M, Cheng JKW, et al. A multifunctional AAV-CRISPR-Cas9 and its host response. Nat Methods 2016; 13(10): 868-74. doi: 10.1038/nmeth.3993 PMID: 27595405
  63. Charlesworth CT, Deshpande PS, Dever DP, et al. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat Med 2019; 25(2): 249-54. doi: 10.1038/s41591-018-0326-x PMID: 30692695
  64. Mehta A, Merkel OM. Immunogenicity of Cas9 protein. J Pharm Sci 2020; 109(1): 62-7. doi: 10.1016/j.xphs.2019.10.003 PMID: 31589876
  65. Hussen BM, Rasul MF, Abdullah SR, et al. Targeting miRNA by CRISPR/Cas in cancer: Advantages and challenges. Mil Med Res 2023; 10(1): 32. doi: 10.1186/s40779-023-00468-6 PMID: 37460924
  66. Paul B, Montoya G. CRISPR-Cas12a: Functional overview and applications. Biomed J 2020; 43(1): 8-17.
  67. Hsu JY, Grünewald J, Szalay R, et al. PrimeDesign software for rapid and simplified design of prime editing guide RNAs. Nat Commun 2021; 12(1): 1034. doi: 10.1038/s41467-021-21337-7 PMID: 33589617
  68. Nakagawa R, Ishiguro S, Okazaki S, et al. Engineered Campylobacter jejuni Cas9 variant with enhanced activity and broader targeting range. Commun Biol 2022; 5(1): 211. doi: 10.1038/s42003-022-03149-7 PMID: 35260779
  69. Ran FA, Cong L, Yan WX, et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 2015; 520(7546): 186-91. doi: 10.1038/nature14299 PMID: 25830891
  70. Katti A, Diaz BJ, Caragine CM, Sanjana NE, Dow LE. CRISPR in cancer biology and therapy. Nat Rev Cancer 2022; 22(5): 259-79. doi: 10.1038/s41568-022-00441-w PMID: 35194172
  71. Xu Y, Li Z. CRISPR-Cas systems: Overview, innovations and applications in human disease research and gene therapy. Comput Struct Biotechnol J 2020; 18: 2401-15. doi: 10.1016/j.csbj.2020.08.031 PMID: 33005303
  72. Dominguez AA, Lim WA, Qi LS. Beyond editing: Repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol 2016; 17(1): 5-15. doi: 10.1038/nrm.2015.2 PMID: 26670017
  73. Shakirova KM, Ovchinnikova VY, Dashinimaev EB. Cell reprogramming with CRISPR/Cas9 based transcriptional regulation systems. Front Bioeng Biotechnol 2020; 8: 882. doi: 10.3389/fbioe.2020.00882 PMID: 32850737
  74. Hori T, Ohnishi H, Kadowaki T, et al. Autosomal dominant Hashimoto’s thyroiditis with a mutation in TNFAIP3. Clin Pediatr Endocrinol 2019; 28(3): 91-6. doi: 10.1297/cpe.28.91 PMID: 31384100
  75. Kuribayashi-Hamada Y, Ishibashi M, Tatsuguchi A, et al. Clinicopathologic characteristics and A20 mutation in primary thyroid lymphoma. J Nippon Med Sch 2022; 89(3): 301-8. doi: 10.1272/jnms.JNMS.2022_89-305 PMID: 34840214
  76. Lu X, Liu Y, Xu L, et al. Role of Jumonji domain-containing protein D3 and its inhibitor GSK-J4 in Hashimoto’s thyroiditis. Open Med 2023; 18(1): 20230659. doi: 10.1515/med-2023-0659 PMID: 36874364
  77. Kalantar K, Khansalar S, Vakili M, Ghasemi D, Dabbaghmanesh MH, Amirghofran Z. Association of Foxp3 gene variants with risk of Hashimoto’s thyroiditis and correlation with anti-Tpo antibody levels. Acta Endocrinol 2019; 15(4): 423-9. doi: 10.4183/aeb.2019.423 PMID: 32377237
  78. Goodwin M, Lee E, Lakshmanan U, et al. CRISPR-based gene editing enables FOXP3 gene repair in IPEX patient cells. Sci Adv 2020; 6(19): eaaz0571. doi: 10.1126/sciadv.aaz0571 PMID: 32494707
  79. Chinen T, Kannan AK, Levine AG, et al. An essential role for the IL-2 receptor in Treg cell function. Nat Immunol 2016; 17(11): 1322-33. doi: 10.1038/ni.3540 PMID: 27595233
  80. Luger D, Silver PB, Tang J, et al. Either a Th17 or a Th1 effector response can drive autoimmunity: Conditions of disease induction affect dominant effector category. J Exp Med 2008; 205(4): 799-810. doi: 10.1084/jem.20071258 PMID: 18391061
  81. Riese MJ, Moon EK, Johnson BD, Albelda SM. Diacylglycerol kinases (DGKs): Novel targets for improving T cell activity in cancer. Front Cell Dev Biol 2016; 4: 108. doi: 10.3389/fcell.2016.00108 PMID: 27800476
  82. Luo X, Zheng T, Mao C, et al. Aberrant MRP14 expression in thyroid follicular cells mediates chemokine secretion through the IL-1β/MAPK pathway in Hashimoto’s thyroiditis. Endocr Connect 2018; 7(6): 850-8. doi: 10.1530/EC-18-0019 PMID: 29764904
  83. Mizobuchi H, Fujii W, Ishizuka K, et al. MRP14 is dispensable for LPS-induced shock in BALB/c mice. Immunol Lett 2018; 194: 13-20. doi: 10.1016/j.imlet.2017.12.003 PMID: 29253495
  84. Zmievskaya E, Valiullina A, Ganeeva I, Petukhov A, Rizvanov A, Bulatov E. Application of CAR-T cell therapy beyond oncology: Autoimmune diseases and viral infections. Biomedicines 2021; 9(1): 59. doi: 10.3390/biomedicines9010059 PMID: 33435454
  85. Chen Y, Sun J, Liu H, Yin G, Xie Q. Immunotherapy deriving from CAR-T cell treatment in autoimmune diseases. J Immunol Res 2019; 2019 doi: 10.1155/2019/5727516
  86. Lee HJ, Stefan-Lifshitz M, Li CW, Tomer Y. Genetics and epigenetics of autoimmune thyroid diseases: Translational implications. Best Pract Res Clin Endocrinol Metab 2023; 37(2): 101661. doi: 10.1016/j.beem.2022.101661 PMID: 35459628
  87. Zheng L, Dou X, Song H, Wang P, Qu W, Zheng X. Bioinformatics analysis of key genes and pathways in Hashimoto thyroiditis tissues. Biosci Rep 2020; 40(7): BSR20200759. doi: 10.1042/BSR20200759 PMID: 32662826
  88. Narooie-Nejad M, Taji O, Tamandani DM, Kaykhaei MA. Association of CTLA-4 gene polymorphisms -318C/T and +49A/G and Hashimoto’s thyroidits in Zahedan, Iran. Biomed Rep 2017; 6(1): 108-12. doi: 10.3892/br.2016.813 PMID: 28123718
  89. Enciso-Vargas M, Ruíz-Madrigal B, Hernández-Nazara ZH, Maldonado-González M. Single nucleotide polymorphisms of cytotoxic T-lymphocyte antigen 4 (CTLA-4) and susceptibility to chronic viral Hepatitis B and C infections. J Renal Hepatic Disord 2018; 2(1): 10-7. doi: 10.15586/jrenhep.2018.27
  90. Fox TA, Houghton BC, Petersone L, et al. Therapeutic gene editing of T cells to correct CTLA-4 insufficiency. Sci Transl Med 2022; 14(668): eabn5811. doi: 10.1126/scitranslmed.abn5811 PMID: 36288278
  91. Naghibi FS, Miresmaeili SM, Javid A. Association of TSHR gene single nucleotide intronic polymorphism with the risk of hypothyroid and hyperthyroid disorders in Yazd province. Sci Rep 2022; 12(1): 15745. doi: 10.1038/s41598-022-19822-0 PMID: 36130976
  92. Zaaber I, Mestiri S, Marmouch H, Tensaout BHJ. Polymorphisms in TSHR gene and the risk and prognosis of autoimmune thyroid disease in Tunisian population. Acta Endocrinol 2020; 16(1): 1-8. doi: 10.4183/aeb.2020.1 PMID: 32685031
  93. Klein JR. Biological impact of the TSHβ splice variant in health and disease. Front Immunol 2014; 5: 155. doi: 10.3389/fimmu.2014.00155 PMID: 24778635
  94. John R. Crispr/Cas9 gene editing targeted to an intron of a novel isoform of the β-subunit of thyroid stimulating hormone in peripheral leukocytes. J Immunol 2019; 202(1): 50. doi: 10.4049/jimmunol.202.Supp.50.1
  95. Yang J, Yi N, Zhang J, et al. Generation and characterization of a hypothyroidism rat model with truncated thyroid stimulating hormone receptor. Sci Rep 2018; 8(1): 4004. doi: 10.1038/s41598-018-22405-7 PMID: 29507327
  96. Wu Y, Han J, Vladimirovna KE, et al. Upregulation of protein tyrosine phosphatase receptor type C associates to the combination of hashimoto’s thyroiditis and papillary thyroid carcinoma and is predictive of a poor prognosis. OncoTargets Ther 2019; 12: 8479-89. doi: 10.2147/OTT.S226426 PMID: 31686862
  97. Wu H, Wan S, Qu M, Ren B, Liu L, Shen H. The relationship between PTPN22 R620W polymorphisms and the susceptibility to autoimmune thyroid diseases: An updated meta-analysis. Immunol Invest 2022; 51(2): 438-51. doi: 10.1080/08820139.2020.1837154 PMID: 33103521
  98. Gong L, Liu B, Wang J, et al. Novel missense mutation in PTPN22 in a Chinese pedigree with Hashimoto’s thyroiditis. BMC Endocr Disord 2018; 18(1): 76. doi: 10.1186/s12902-018-0305-8 PMID: 30384852
  99. Bray C, Wright D, Haupt S, Thomas S, Stauss H, Zamoyska R. Crispr/Cas mediated deletion of PTPN22 in Jurkat T cells enhances TCR signaling and production of IL-2. Front Immunol 2018; 9: 2595. doi: 10.3389/fimmu.2018.02595 PMID: 30483260
  100. Prade S, Wright D, Logan N, Teagle AR, Stauss H, Zamoyska R. CRISPR-mediated deletion of the Protein tyrosine phosphatase, non-receptor type 22 (PTPN22) improves human T cell function for adoptive T cell therapy. bioRxiv 2020; 2020: 410043. doi: 10.1101/2020.12.03.410043
  101. Roehlen N, Doering C, Hansmann ML, et al. FOXO3a, and Sirtuin1 in Hashimoto’s thyroiditis and differentiated thyroid cancer. Front Endocrinol 2018; 9: 527. doi: 10.3389/fendo.2018.00527 PMID: 30271381
  102. Pani F, Caria P, Yasuda Y, et al. The immune landscape of papillary thyroid cancer in the context of autoimmune thyroiditis. Cancers 2022; 14(17): 4287. doi: 10.3390/cancers14174287 PMID: 36077831
  103. Yilmaz HO, Cebi AH, Kocak M, Ersoz HO, Ikbal M. MicroRNA expression levels in patients with hashimoto thyroiditis: A single centre study. Endocr Metab Immune Disord Drug Targets 2021; 21(6): 1066-72. doi: 10.2174/1871530320999200918142429
  104. Menegatti J, Nakel J, Stepanov YK, et al. Changes of protein expression after CRISPR/Cas9 knockout of miRNA-142 in cell lines derived from diffuse Large b-cell lymphoma. Cancers 2022; 14(20): 5031. doi: 10.3390/cancers14205031 PMID: 36291816
  105. Peng W, Li W, Zhang X, Cen W, Liu Y. The intercorrelation among CCT6A, CDC20, CCNB1, and PLK1 expressions and their clinical value in papillary thyroid carcinoma prognostication. J Clin Lab Anal 2022; 36(9): e24609. doi: 10.1002/jcla.24609 PMID: 35838025
  106. Ding J, Frantzeskos A, Orozco G. Functional interrogation of autoimmune disease genetics using CRISPR/Cas9 technologies and massively parallel reporter assays. In: Seminars in Immunopathology. Berlin Heidelberg: Springer 2022.
  107. Krishan K, Kanchan T, Singh B. Human genome editing and ethical considerations. Sci Eng Ethics 2016; 22(2): 597-9. doi: 10.1007/s11948-015-9675-8 PMID: 26154417

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Bentham Science Publishers