The Potential Mechanism of Eriodictyol in Treating Alzheimer's Disease: A Study on Computer-assisted Investigational Strategies
- Авторлар: Du D.1, Qin C.1, Sun M.1, Lv F.1, Li W.1, Liu S.1
-
Мекемелер:
- Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University
- Шығарылым: Том 30, № 26 (2024)
- Беттер: 2086-2107
- Бөлім: Immunology, Inflammation & Allergy
- URL: https://modernonco.orscience.ru/1381-6128/article/view/645850
- DOI: https://doi.org/10.2174/0113816128304628240526071425
- ID: 645850
Дәйексөз келтіру
Толық мәтін
Аннотация
Background:At present, drug development for treating Alzheimers disease (AD) is still highly challenging. Eriodictyol (ERD) has shown great potential in treating AD, but its molecular mechanism is unknown.
Objective:We aimed to explore the potential targets and mechanisms of ERD in the treatment of AD through network pharmacology, molecular docking, and molecular dynamics simulations.
Methods:ERD-related targets were predicted based on the CTD, SEA, PharmMapper, Swiss TargetPrediction, and ETCM databases, and AD-related targets were predicted through the TTD, OMIM, DrugBank, GeneCards, Disgenet, and PharmGKB databases. Protein-protein interaction, Gene Ontology (GO), and Kyoto Encyclopedia of Genes and Genomics analyses (KEGG) were used to analyse the potential targets and key pathways of the anti-AD effect of ERD. Subsequently, potential DEGs affected by AD were analysed using the AlzData database, and their relationships with ERD were evaluated through molecular docking and molecular dynamics simulations.
Results:A total of 198 ERD-related targets, 3716 AD-related targets, and 122 intersecting targets were identified. GO annotation analysis revealed 1497 biological processes, 78 cellular components, and 132 molecular functions of 15 core targets. KEGG enrichment analysis identified 168 signalling pathways. We ultimately identified 9 DEGs associated with AD through analysis of the AlzData data. Molecular docking results showed good affinity between the selected targets and ERD, with PTGS2, HSP90AA1, and BCL2. The interactions were confirmed by molecular dynamics simulations.
Conclusion:ERD exerts anti-AD effects through multiple targets, pathways, and levels, providing a theoretical foundation and valuable reference for the development of ERD as a natural anti-AD drug.
Авторлар туралы
Dan Du
Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University
Email: info@benthamscience.net
Chunmeng Qin
Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University
Email: info@benthamscience.net
Mei Sun
Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University
Email: info@benthamscience.net
Feng Lv
Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University
Email: info@benthamscience.net
Wenjun Li
Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Songqing Liu
Department of Pharmacy, The Third Affiliated Hospital of Chongqing Medical University
Хат алмасуға жауапты Автор.
Email: info@benthamscience.net
Әдебиет тізімі
- Serrano-Pozo A, Growdon JH. Is Alzheimers disease risk modifiable? J Alzheimers Dis 2019; 67(3): 795-819. doi: 10.3233/JAD181028 PMID: 30776012
- Scheltens P, De Strooper B, Kivipelto M, et al. Alzheimers disease. Lancet 2021; 397(10284): 1577-90. doi: 10.1016/S0140-6736(20)32205-4 PMID: 33667416
- Cummings J, Lee G, Nahed P, et al. Alzheimers disease drug development pipeline: 2022. Alzheimers Dement 2022; 8(1): e12295.
- Simunkova M, Barbierikova Z, Jomova K, et al. Antioxidant vs. prooxidant properties of the flavonoid, kaempferol, in the presence of Cu(II) ions: A ROS-scavenging activity, fenton reaction and DNA damage study. Int J Mol Sci 2021; 22(4): 1619. doi: 10.3390/ijms22041619 PMID: 33562744
- Treatment for Alzheimers disease: Time to get ready. Lancet Neurol 2023; 22(6): 455. doi: 10.1016/S1474-4422(23)00167-9 PMID: 37210085
- Cummings J, Osse AML. Anti-amyloid monoclonal antibodies for the treatment of Alzheimers disease. BioDrugs 2024; 38: 5-22.
- Yuan Y, Zhai Y, Chen J, Xu X, Wang H. Kaempferol ameliorates oxygen-glucose deprivation/reoxygenation-induced neuronal ferroptosis by activating Nrf2/SLC7A11/GPX4 axis. Biomolecules 2021; 11(7): 923. doi: 10.3390/biom11070923 PMID: 34206421
- Lv F, Du Q, Li L, et al. Eriodictyol inhibits glioblastoma migration and invasion by reversing EMT via downregulation of the P38 MAPK/GSK-3β/ZEB1 pathway. Eur J Pharmacol 2021; 900: 174069. doi: 10.1016/j.ejphar.2021.174069 PMID: 33811837
- Buranasudja V, Muangnoi C, Sanookpan K, Halim H, Sritularak B, Rojsitthisak P. Eriodictyol attenuates H2O2-induced oxidative damage in human dermal fibroblasts through enhanced capacity of antioxidant machinery. Nutrients 2022; 14(12): 2553. doi: 10.3390/nu14122553 PMID: 35745283
- Li L, Li WJ, Zheng XR, et al. Eriodictyol ameliorates cognitive dysfunction in APP/PS1 mice by inhibiting ferroptosis via vitamin D receptor-mediated Nrf2 activation. Mol Med 2022; 28(1): 11. doi: 10.1186/s10020-022-00442-3 PMID: 35093024
- Zhao L, Zhang H, Li N, et al. Network pharmacology, a promising approach to reveal the pharmacology mechanism of Chinese medicine formula. J Ethnopharmacol 2023; 309: 116306. doi: 10.1016/j.jep.2023.116306 PMID: 36858276
- Nogales C, Mamdouh ZM, List M, Kiel C, Casas AI, Schmidt HHHW. Network pharmacology: Curing causal mechanisms instead of treating symptoms. Trends Pharmacol Sci 2022; 43(2): 136-50. doi: 10.1016/j.tips.2021.11.004 PMID: 34895945
- Komura H, Watanabe R, Mizuguchi K. The trends and future prospective of in silico models from the viewpoint of ADME evaluation in drug discovery. Pharmaceutics 2023; 15(11): 2619. doi: 10.3390/pharmaceutics15112619 PMID: 38004597
- Weininger D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J Chem Inf Comput Sci 1988; 28(1): 31-6. doi: 10.1021/ci00057a005
- Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci Rep 2017; 7(1): 42717. doi: 10.1038/srep42717 PMID: 28256516
- Davis AP, Wiegers TC, Johnson RJ, Sciaky D, Wiegers J, Mattingly CJ. Comparative Toxicogenomics Database (CTD): Update 2023. Nucleic Acids Res 2023; 51(D1): D1257-62. doi: 10.1093/nar/gkac833 PMID: 36169237
- Wang X, Shen Y, Wang S, et al. PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Res 2017; 45(W1): W356-60. doi: 10.1093/nar/gkx374 PMID: 28472422
- Xu HY, Zhang YQ, Liu ZM, et al. ETCM: An encyclopaedia of traditional Chinese medicine. Nucleic Acids Res 2019; 47(D1): D976-82. doi: 10.1093/nar/gky987 PMID: 30365030
- Zhang J, Durham J, Cong Q. Revolutionizing protein-protein interaction prediction with deep learning. Curr Opin Struct Biol 2024; 85: 102775. doi: 10.1016/j.sbi.2024.102775 PMID: 38330793
- Shannon P, Markiel A, Ozier O, et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 2003; 13(11): 2498-504. doi: 10.1101/gr.1239303 PMID: 14597658
- Stelzer G, Plaschkes I, Oz-Levi D, et al. VarElect: The phenotype-based variation prioritizer of the GeneCards Suite. BMC Genomics 2016; 17 (Suppl. 2): 444.
- Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 2019; 10(1): 1523. doi: 10.1038/s41467-019-09234-6 PMID: 30944313
- Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 2000; 28(1): 27-30. doi: 10.1093/nar/28.1.27 PMID: 10592173
- Gene Ontology Consortium. Gene ontology consortium: Going forward. Nucleic Acids Res 2015; 43(Database issue): D1049-56. PMID: 25428369
- The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. Nucleic Acids Res 2019; 47(D1): D330-8. doi: 10.1093/nar/gky1055 PMID: 30395331
- Xu M, Zhang DF, Luo R, et al. A systematic integrated analysis of brain expression profiles reveals YAP1 and other prioritized hub genes as important upstream regulators in Alzheimers disease. Alzheimers Dement 2018; 14(2): 215-29. doi: 10.1016/j.jalz.2017.08.012 PMID: 28923553
- Keil JM, Qalieh A, Kwan KY. Brain transcriptome databases: A users guide. J Neurosci 2018; 38(10): 2399-412. doi: 10.1523/JNEUROSCI.1930-17.2018 PMID: 29437890
- Saikia S, Bordoloi M. Molecular docking: Challenges, advances and its use in drug discovery perspective. Curr Drug Targets 2019; 20(5): 501-21. doi: 10.2174/1389450119666181022153016 PMID: 30360733
- Seeliger D, de Groot BL. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J Comput Aided Mol Des 2010; 24(5): 417-22. doi: 10.1007/s10822-010-9352-6 PMID: 20401516
- Hospital A, Goñi JR, Orozco M, Gelpí JL. Molecular dynamics simulations: Advances and applications. Adv Appl Bioinform Chem 2015; 8: 37-47. PMID: 26604800
- Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol 2002; 9(9): 646-52. doi: 10.1038/nsb0902-646 PMID: 12198485
- Wu X, Xu LY, Li EM, Dong G. Application of molecular dynamics simulation in biomedicine. Chem Biol Drug Des 2022; 99(5): 789-800. doi: 10.1111/cbdd.14038 PMID: 35293126
- Van Der Spoel D, Lindahl E, Hess B, Groenhof G, Mark AE, Berendsen HJC. GROMACS: Fast, flexible, and free. J Comput Chem 2005; 26(16): 1701-18. doi: 10.1002/jcc.20291 PMID: 16211538
- Pronk S, Páll S, Schulz R, et al. GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 2013; 29(7): 845-54. doi: 10.1093/bioinformatics/btt055 PMID: 23407358
- Weber OC, Uversky VN. How accurate are your simulations? Effects of confined aqueous volume and AMBER FF99SB and CHARMM22/CMAP force field parameters on structural ensembles of intrinsically disordered proteins: Amyloid-β42 in water. Intrinsically Disord Proteins 2017; 5(1): e1377813. doi: 10.1080/21690707.2017.1377813 PMID: 30250773
- Boonstra S, Onck PR, van der Giessen E. CHARMM TIP3P water model suppresses peptide folding by solvating the unfolded state. J Phys Chem B 2016; 120(15): 3692-8. doi: 10.1021/acs.jpcb.6b01316 PMID: 27031562
- Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings1. Adv Drug Deliv Rev 2001; 46(1-3): 3-26. PII of original article: S0169- 409X(96)00423-1. The article was originally published in Advanced Drug Delivery Reviews 23 (1997) 3-25.1. doi: 10.1016/S0169-409X(00)00129-0 PMID: 11259830
- Middleton G, Piñón LG, Wyatt S, Davies AM. Bcl-2 accelerates the maturation of early sensory neurons. J Neurosci 1998; 18(9): 3344-50. doi: 10.1523/JNEUROSCI.18-09-03344.1998 PMID: 9547242
- Liu G, Li Z, Li Z, Hao C, Liu Y. Molecular dynamics simulation and in vitro digestion to examine the impact of theaflavin on the digestibility and structural properties of myosin. Int J Biol Macromol 2023; 247: 125836. doi: 10.1016/j.ijbiomac.2023.125836 PMID: 37455005
- Pitera JW. Expected distributions of root-mean-square positional deviations in proteins. J Phys Chem B 2014; 118(24): 6526-30. doi: 10.1021/jp412776d PMID: 24655018
- Kalirajan R, Rishabh K, Srikanth J, Niharika M, Preeya N, Rezaul I. Molecular docking, MM-GBSA, and molecular dynamics approach: 5-MeO-DMT analogues as potential antidepressants. Arch Razi Inst 2023; 78(5): 1603-14. PMID: 38590677
- Kumar BK, Faheem , Sekhar KVGC, et al. Pharmacophore based virtual screening, molecular docking, molecular dynamics and MM-GBSA approach for identification of prospective SARS-CoV-2 inhibitor from natural product databases. J Biomol Struct Dyn 2022; 40(3): 1363-86. doi: 10.1080/07391102.2020.1824814 PMID: 32981461
- Baidya ATK, Kumar A, Kumar R, Darreh-Shori T. Allosteric binding sites of Aβ peptides on the acetylcholine synthesizing enzyme ChAT as deduced by in silico molecular modeling. Int J Mol Sci 2022; 23(11): 6073. doi: 10.3390/ijms23116073 PMID: 35682752
- Li H, Weng Q, Gong S, et al. Kaempferol prevents acetaminophen-induced liver injury by suppressing hepatocyte ferroptosis via Nrf2 pathway activation. Food Funct 2023; 14(4): 1884-96. doi: 10.1039/D2FO02716J PMID: 36723004
- Deng Z, Hassan S, Rafiq M, et al. Pharmacological activity of eriodictyol: The major natural polyphenolic flavanone. Evid Based Complementary Altern Med 2020; 2020: 6681352.
- Ren JX, Sun X, Yan XL, Guo ZN, Yang Y. Ferroptosis in neurological diseases. Front Cell Neurosci 2020; 14: 218. doi: 10.3389/fncel.2020.00218 PMID: 32754017
- Xie Y, Hou W, Song X, et al. Ferroptosis: Process and function. Cell Death Differ 2016; 23(3): 369-79. doi: 10.1038/cdd.2015.158 PMID: 26794443
- Lane DJR, Ayton S, Bush AI. Iron and Alzheimers disease: An update on emerging mechanisms. J Alzheimers Dis 2018; 64(s1): S379-95. doi: 10.3233/JAD-179944 PMID: 29865061
- Guo P, Zeng M, Wang S, et al. Eriodictyol and homoeriodictyol improve memory impairment in Aβ25-35-induced mice by inhibiting the NLRP3 inflammasome. Molecules 2022; 27(8): 2488. doi: 10.3390/molecules27082488 PMID: 35458684
- Guo JW, Guan PP, Ding WY, et al. Erythrocyte membrane-encapsulated celecoxib improves the cognitive decline of Alzheimers disease by concurrently inducing neurogenesis and reducing apoptosis in APP/PS1 transgenic mice. Biomaterials 2017; 145: 106-27. doi: 10.1016/j.biomaterials.2017.07.023 PMID: 28865290
- Ma SL, Tang NLS, Zhang YP, et al. Association of prostaglandin-endoperoxide synthase 2 (PTGS2) polymorphisms and Alzheimers disease in Chinese. Neurobiol Aging 2008; 29(6): 856-60. doi: 10.1016/j.neurobiolaging.2006.12.011 PMID: 17234302
- He P, Yan S, Zheng J, et al. Eriodictyol attenuates LPS-induced neuroinflammation, amyloidogenesis, and cognitive impairments via the inhibition of NF-κB in male C57BL/6J mice and BV2 microglial cells. J Agric Food Chem 2018; 66(39): 10205-14. doi: 10.1021/acs.jafc.8b03731 PMID: 30208700
- Xiang Z, Ho L, Yemul S, et al. Cyclooxygenase-2 promotes amyloid plaque deposition in a mouse model of Alzheimers disease neuropathology. Gene Expr 2002; 10(5): 271-8. doi: 10.3727/000000002783992352 PMID: 12450219
- Brust AK, Ulbrich HK, Seigel GM, Pfeiffer N, Grus FH. Effects of cyclooxygenase inhibitors on apoptotic neuroretinal cells. Biomark Insights 2008; 3: BMI.S692. doi: 10.4137/BMI.S692 PMID: 19578520
- Zhou Z, Lu C, Meng S, et al. Silencing of PTGS2 exerts promoting effects on angiogenesis endothelial progenitor cells in mice with ischemic stroke via repression of the NF‐κB signaling pathway. J Cell Physiol 2019; 234(12): 23448-60. doi: 10.1002/jcp.28914 PMID: 31222746
- Siddiqui WA, Ahad A, Ahsan H. The mystery of BCL2 family: Bcl-2 proteins and apoptosis: An update. Arch Toxicol 2015; 89(3): 289-317. doi: 10.1007/s00204-014-1448-7 PMID: 25618543
- Peña-Blanco A, García-Sáez AJ. Bax, Bak and beyond - mitochondrial performance in apoptosis. FEBS J 2018; 285(3): 416-31. doi: 10.1111/febs.14186 PMID: 28755482
- Salakou S, Kardamakis D, Tsamandas AC, et al. Increased Bax/Bcl-2 ratio up-regulates caspase-3 and increases apoptosis in the thymus of patients with myasthenia gravis. In Vivo 2007; 21(1): 123-32. PMID: 17354625
- Martinou JC, Dubois-Dauphin M, Staple JK, et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 1994; 13(4): 1017-30. doi: 10.1016/0896-6273(94)90266-6 PMID: 7946326
- Li Z, Xiao G, Wang H, He S, Zhu Y. A preparation of Ginkgo biloba L. leaves extract inhibits the apoptosis of hippocampal neurons in post-stroke mice via regulating the expression of Bax/Bcl-2 and Caspase-3. J Ethnopharmacol 2021; 280: 114481. doi: 10.1016/j.jep.2021.114481 PMID: 34343651
- He LL, Wang YC, Ai YT, et al. Qiangji decoction alleviates neurodegenerative changes and hippocampal neuron apoptosis induced by D-Galactose via regulating AMPK/SIRT1/NF-κB signaling pathway. Front Pharmacol 2021; 12: 735812. doi: 10.3389/fphar.2021.735812 PMID: 34630111
- Qian X, Liu X, Chen S, Tang H. Integrating peripheral blood and brain transcriptomics to identify immunological features associated with Alzheimers disease in mild cognitive impairment patients. Front Immunol 2022; 13: 986346. doi: 10.3389/fimmu.2022.986346 PMID: 36159817
- van Oosten-Hawle P. Organismal roles of Hsp90. Biomolecules 2023; 13(2): 251. doi: 10.3390/biom13020251 PMID: 36830620
- Hoter A, El-Sabban M, Naim H. The HSP90 family: Structure, regulation, function, and implications in health and disease. Int J Mol Sci 2018; 19(9): 2560. doi: 10.3390/ijms19092560 PMID: 30158430
- Dou F, Netzer WJ. Chaperones increase association of tau protein with microtubules. Proc Natl Acad Sci USA 2003; 100(2): 721-6.
- Long HZ, Cheng Y, Zhou ZW, Luo HY, Wen DD, Gao LC. PI3K/AKT signal pathway: A target of natural products in the prevention and treatment of Alzheimers disease and Parkinsons disease. Front Pharmacol 2021; 12: 648636. doi: 10.3389/fphar.2021.648636 PMID: 33935751
- Zheng X, Wu X, Wen Q, et al. Eriodictyol alleviated LPS/D-GalN-induced acute liver injury by inhibiting oxidative stress and cell apoptosis via PI3K/AKT signaling pathway. Nutrients 2023; 15(20): 4349. doi: 10.3390/nu15204349 PMID: 37892424
- Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M. Alzheimers disease: Pathogenesis, diagnostics, and therapeutics. Int J Nanomed 2019; 14: 5541-54. doi: 10.2147/IJN.S200490 PMID: 31410002
- Jing X, Shi H, Zhu X, et al. Eriodictyol attenuates β-Amyloid 25-35 peptide-induced oxidative cell death in primary cultured neurons by activation of Nrf2. Neurochem Res 2015; 40(7): 1463-71. doi: 10.1007/s11064-015-1616-z PMID: 25994859
- Leng F, Edison P. Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol 2021; 17(3): 157-72. doi: 10.1038/s41582-020-00435-y PMID: 33318676
- Oliveira TG, Di Paolo G. Phospholipase D in brain function and Alzheimers disease. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801(8): 799-805. doi: 10.1016/j.bbalip.2010.04.004 PMID: 20399893
- Bravo FV, Da Silva J, Chan RB, Di Paolo G, Teixeira-Castro A, Oliveira TG. Phospholipase D functional ablation has a protective effect in an Alzheimers disease Caenorhabditis elegans model. Sci Rep 2018; 8(1): 3540. doi: 10.1038/s41598-018-21918-5 PMID: 29476137
- McDermott MI, Wang Y, Wakelam MJO, Bankaitis VA. Mammalian phospholipase D: Function, and therapeutics. Prog Lipid Res 2020; 78: 101018. doi: 10.1016/j.plipres.2019.101018 PMID: 31830503
- Kobayashi M, McCartney DG, Kanfer JN. Developmental changes and regional distribution of phospholipase D and base exchange enzyme activities in rat brain. Neurochem Res 1988; 13(8): 771-6. doi: 10.1007/BF00971601 PMID: 3173625
- Bourne KZ, Natarajan C, Perez CXM, Tumurbaatar B, Taglialatela G, Krishnan B. Suppressing aberrant phospholipase D1 signaling in 3xTg Alzheimers disease mouse model promotes synaptic resilience. Sci Rep 2019; 9(1): 18342. doi: 10.1038/s41598-019-54974-6 PMID: 31797996
Қосымша файлдар
