Modeling of damage along the tracks of swift heavy ions in polyethylene

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The results of atomic-level modeling of damage formation along the whole trajectory of swift heavy ions, stopping in the electronic energy loss mode in polyethylene are presented. Theoretical models could significantly improve the understanding of track formation in polymers, but their main disadvantage is an insufficient level of detail. In this paper, this problem is solved by using a multiscale hybrid approach: the Monte-Carlo TREKIS program describes the excitation of an electronic system of a target; the reactive molecular dynamics of the response of an atomic system to an ion-induced perturbation within the framework of the LAMMPS program allows to trace the damage up to the time of complete cooling of the track. Detailed tracing of the coupled electronic and atomic kinetics has shown that the damage maxima are spatially separated by at least 10 micrometers from the maxima of energy released by the ions. The differences occur due to the dependence of the initial spectra of electrons generated near the ion trajectory on the ion energy. The effects demonstrated should be the same for all polymers and may be critical for the effective operation of devices and detectors containing thin polymer films irradiated with swift heavy ions.

全文:

受限制的访问

作者简介

P. Babaev

P.N. Lebedev Physical Institute of the RAS

编辑信件的主要联系方式.
Email: babaevpa@lebedev.ru
俄罗斯联邦, Moscow

R. Voronkov

P.N. Lebedev Physical Institute of the RAS

Email: babaevpa@lebedev.ru
俄罗斯联邦, Moscow

A. Volkov

P.N. Lebedev Physical Institute of the RAS; National Research Centre “Kurchatov Institute”

Email: babaevpa@lebedev.ru
俄罗斯联邦, Moscow; Moscow

参考

  1. Zhao S., Zhang G., Shen W., Wang X., Liu F. // J. Appl. Phys. 2020. V. 128. № 13. P. 131102. https://www.doi.org/10.1063/5.0015975
  2. Komarov F.F. // Physics-Uspekhi. 2017. V. 60. № 5. P. 435. https://www.doi.org/10.3367/ufne.2016.10.038012
  3. Medvedev N., Volkov A.E., Rymzhanov R., Akhmetov F., Gorbunov S., Voronkov R., Babaev P. // J. Appl. Phys. 2023. V. 133. № 10. P. 8979. https://www.doi.org/10.1063/5.0128774
  4. Liu F., Wang M., Wang X., Wang P. // Nanotechnology. 2018. V. 30. № 5. P. 052001. https://www.doi.org/10.1088/1361-6528/aaed6d
  5. Apel P. // Radiat. Phys. Chem. 2019. V. 159. P. 25. https://doi.org/10.1016/j.radphyschem.2019.01.009
  6. Fink D. // Springer Science & Business Media. 2004. V.63.
  7. Husaini S., Zaidi J., Malik F., Arif M. // Radiat. Meas. 2008. V. 4. P. S607. https://doi.org/10.1016/j.radmeas.2008.03.070
  8. Tuleushev A., Harrison F., Kozlovskiy A., Zdorovets M. // Polymers. 2023. V.15 №20. P. 4050. https://doi.org/10.3390/polym15204050
  9. Balanzat E., Betz N., Bouffard S. // Nucl Instrum Methods Phys Res B . 1995. V. 105. P.46. https://doi.org/10.1016/0168-583X(95)00521-8
  10. Shen W., Wang X., Zhang G., Kluth P., Wang Y., Liu F. // Nucl. Instrum. Methods Phys. Res. B. 2023. V. 535. P. 102. https://www.doi.org/10.1016/j.nimb.2022.11.021
  11. Kański M., Dawid M., Postawa Z., Ashraf M.C., van Duin A.C.T., Garrison B.J. // J. Phys. Chem. Lett. 2018. V. 9. Iss. 2. P. 359. https://www.doi.org/10.1021/acs.jpclett.7b03155
  12. Kański M., Hrabar S., van Duin A.C.T., Postawa Z. // J. Phys. Chem. Lett. 2022. V. 13. Iss. 2. P. 628. https://www.doi.org/10.1021/acs.jpclett.1c03867
  13. Medvedev N.A., Rymzhanov R.A., Volkov A.E. // J. Phys. D: Appl. Phys. 2015. V. 48. № 35. P. 355303. https://www.doi.org/10.1088/0022-3727/48/35/355303
  14. Rymzhanov R.A., Medvedev N.A., Volkov A.E. // Nucl. Instrum. Methods Phys. Res. B. 2016. V. 388. P. 41. https://www.doi.org/10.1016/j.nimb.2016.11.002
  15. Van Hove L. // Phys. Rev. 1954. V. 95. № 1. P. 249. https://www.doi.org/10.1103/PhysRev.95.249
  16. Palik E.D. Handbook of optical constants of solids. Academic press, 1997. 2008 p.
  17. Henke B.L., Gullikson E.M., Davis J.C. // Atomic data and nuclear data tables. 1993. V. 54. № 2. P. 181. https://www.doi.org/10.1006/adnd.1993.1013
  18. Ritchie R.H., Howie A. // Philos. Mag. 1977. V. 36. № 2. P. 463. https://www.doi.org/10.1080/14786437708244948
  19. Adachi S. The Handbook on Optical Constants of Semiconductors: In Tables and Figures. Singapore: World Scientific Publishing Company, 2012. 632 p.
  20. Powell C.J., Jablonski A. // J. Phys. Chem. Ref. Data. 1999. V. 28. № 1. P. 19. https://www.doi.org/10.1063/1.556035
  21. Jablonski A., Powell C.J. // J. Electron Spectros Relat. Phenomena. 2015. V. 199. P. 27. https://www.doi.org/10.1016/j.elspec.2014.12.011
  22. Ziegler J.P., Biersack U., Littmark J.F. The Stopping and Range of Ions in Solids. New York: Pergamon Press, 1985. 321 p.
  23. Medvedev N., Babaev P., Chalupský J., Juha L., Volkov A.E. // Phys. Chem. Chem. Phys. 2021. V. 23. № 30. P. 16193. https://www.doi.org/10.1039/D1CP02199K
  24. Jo S., Kim T., Iyer V.G., Im W. // J. Comput. Chem. 2008. V. 29. № 11. P. 1859. https://www.doi.org/10.1002/jcc.20945
  25. Abbott L.J., Hart K.E., Colina C.M. // Theor. Chem. Acc. 2013. V. 132. P. 1. https://www.doi.org/10.1007/s00214-013-1334-z
  26. Shirazi M.M.H., Khajouei-Nezhad M., Zebarjad S.M., Ebrahimi R. // Polym. Bull. 2020. V. 77. P. 1681. https://www.doi.org/10.1007/s00289-019-02827-7
  27. Berendsen H.J.C., Postma J.P.M., Gunsteren W.F., DiNola A., Haak J.R. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684. https://www.doi.org/10.1063/1.448118
  28. Plimpton S. // J. Comput. Phys. 1995. V. 117. № 1. P. 1. https://www.doi.org/10.1006/jcph.1995.1039
  29. O′Connor T.C., Andzelm J., Robbins M. // J. Chem. Phys. 2015. V. 142. № 2. P. 024903. https://www.doi.org/10.1063/1.4905549
  30. Stukowski A. // Modelling Simul. Mater. Sci. Eng. 2009. V. 18. № 1. P. 015012. https://www.doi.org/10.1088/0965-0393/18/1/015012
  31. Rymzhanov R.A., Gorbunov S.A., Medvedev N., Volkov A.E. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 440. P. 25. https://www.doi.org/10.1016/j.nimb.2018.11.034
  32. Rymzhanov, R.A., Medvedev, N., Volkov, A.E. // J. Mater Sci. 2023. V. 58. P. 14072. https://www.doi.org/10.1007/s10853-023-08898-2

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Energy loss curves of xenon (a) and uranium (b) ions in a polyethylene target.

下载 (29KB)
3. Fig. 2. Radial distribution of the energy density released into the target’s atomic subsystem in 100 fs of flight of a xenon ion (a) with an energy of 30 (1), 300 (2, corresponds to the Bragg resonance in polyethylene) and 2090 MeV (3); a uranium ion (b) with an energy of 100 (1), 700 (2, Bragg peak) and 5500 MeV (3).

下载 (32KB)
4. Fig. 3. Pair correlation functions corresponding to carbon–hydrogen (1, C–H), carbon–carbon (2, C–C), hydrogen–hydrogen (3, H–H) bonds during the flight of uranium with an energy of 100 (a); 700 (b); 5500 MeV (c) through a polyethylene target.

下载 (32KB)
5. Fig. 4. View of the damaged cell from the side of the incident uranium ion with an energy of 100 (a); 700 (b); 5500 MeV (c). Visualization made in the Ovito program.

下载 (85KB)
6. Fig. 5. Dependences of linear energy losses and the number of carbon atoms with a reduced number of bonds on the distance traveled by the xenon ion (a) and uranium (b) in polyethylene. The arrow shows: maximum energy release (1); maximum number of breaks (2).

下载 (33KB)

版权所有 © Russian Academy of Sciences, 2025