Моделирование повреждений в полиэтилене вдоль траекторий быстрых тяжелых ионов

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Представлены результаты моделирования образования на атомарном уровне повреждений вдоль всей траектории быстрых тяжелых ионов, тормозящих в режиме электронных потерь энергии в полиэтилене. Аналитические модели могли бы значительно улучшить понимание формирования треков в полимерах, но имеют своим главным недостатком низкий уровень детализации. В настоящей работе эта проблема решена с использованием мультимасштабной гибридной численной модели: методом Монте-Карло с помощью программы TREKIS описано возбуждение электронной системы материала; молекулярно-динамическое моделирование отклика атомной системы на внесенное налетающим ионом возмущение, реализованное в программе LAMMPS, позволило отслеживать повреждение вплоть до времен полного остывания трека. Детальное описание кинетики взаимодействующих электронной и атомной систем материала позволило продемонстрировать пространственное разделение положений максимумов повреждений и максимумов выделения энергии на траектории иона в полиэтилене на, по меньшей мере, 10 мкм. Различия обусловлены зависимостью начальных спектров электронов, генерируемых вблизи траектории иона, от энергии иона. Продемонстрированные эффекты должны проявляться в любых полимерах и могут иметь решающее значение для эффективной работы облучаемых быстрыми тяжелыми ионами устройств и детекторов, содержащих тонкие полимерные пленки.

Полный текст

Доступ закрыт

Об авторах

П. А. Бабаев

Физический институт имени П.Н. Лебедева РАН

Автор, ответственный за переписку.
Email: babaevpa@lebedev.ru
Россия, Москва

Р. А. Воронков

Физический институт имени П.Н. Лебедева РАН

Email: babaevpa@lebedev.ru
Россия, Москва

А. Е. Волков

Физический институт имени П.Н. Лебедева РАН; Национальный исследовательский центр “Курчатовский институт”

Email: babaevpa@lebedev.ru
Россия, Москва; Москва

Список литературы

  1. Zhao S., Zhang G., Shen W., Wang X., Liu F. // J. Appl. Phys. 2020. V. 128. № 13. P. 131102. https://www.doi.org/10.1063/5.0015975
  2. Komarov F.F. // Physics-Uspekhi. 2017. V. 60. № 5. P. 435. https://www.doi.org/10.3367/ufne.2016.10.038012
  3. Medvedev N., Volkov A.E., Rymzhanov R., Akhmetov F., Gorbunov S., Voronkov R., Babaev P. // J. Appl. Phys. 2023. V. 133. № 10. P. 8979. https://www.doi.org/10.1063/5.0128774
  4. Liu F., Wang M., Wang X., Wang P. // Nanotechnology. 2018. V. 30. № 5. P. 052001. https://www.doi.org/10.1088/1361-6528/aaed6d
  5. Apel P. // Radiat. Phys. Chem. 2019. V. 159. P. 25. https://doi.org/10.1016/j.radphyschem.2019.01.009
  6. Fink D. // Springer Science & Business Media. 2004. V.63.
  7. Husaini S., Zaidi J., Malik F., Arif M. // Radiat. Meas. 2008. V. 4. P. S607. https://doi.org/10.1016/j.radmeas.2008.03.070
  8. Tuleushev A., Harrison F., Kozlovskiy A., Zdorovets M. // Polymers. 2023. V.15 №20. P. 4050. https://doi.org/10.3390/polym15204050
  9. Balanzat E., Betz N., Bouffard S. // Nucl Instrum Methods Phys Res B . 1995. V. 105. P.46. https://doi.org/10.1016/0168-583X(95)00521-8
  10. Shen W., Wang X., Zhang G., Kluth P., Wang Y., Liu F. // Nucl. Instrum. Methods Phys. Res. B. 2023. V. 535. P. 102. https://www.doi.org/10.1016/j.nimb.2022.11.021
  11. Kański M., Dawid M., Postawa Z., Ashraf M.C., van Duin A.C.T., Garrison B.J. // J. Phys. Chem. Lett. 2018. V. 9. Iss. 2. P. 359. https://www.doi.org/10.1021/acs.jpclett.7b03155
  12. Kański M., Hrabar S., van Duin A.C.T., Postawa Z. // J. Phys. Chem. Lett. 2022. V. 13. Iss. 2. P. 628. https://www.doi.org/10.1021/acs.jpclett.1c03867
  13. Medvedev N.A., Rymzhanov R.A., Volkov A.E. // J. Phys. D: Appl. Phys. 2015. V. 48. № 35. P. 355303. https://www.doi.org/10.1088/0022-3727/48/35/355303
  14. Rymzhanov R.A., Medvedev N.A., Volkov A.E. // Nucl. Instrum. Methods Phys. Res. B. 2016. V. 388. P. 41. https://www.doi.org/10.1016/j.nimb.2016.11.002
  15. Van Hove L. // Phys. Rev. 1954. V. 95. № 1. P. 249. https://www.doi.org/10.1103/PhysRev.95.249
  16. Palik E.D. Handbook of optical constants of solids. Academic press, 1997. 2008 p.
  17. Henke B.L., Gullikson E.M., Davis J.C. // Atomic data and nuclear data tables. 1993. V. 54. № 2. P. 181. https://www.doi.org/10.1006/adnd.1993.1013
  18. Ritchie R.H., Howie A. // Philos. Mag. 1977. V. 36. № 2. P. 463. https://www.doi.org/10.1080/14786437708244948
  19. Adachi S. The Handbook on Optical Constants of Semiconductors: In Tables and Figures. Singapore: World Scientific Publishing Company, 2012. 632 p.
  20. Powell C.J., Jablonski A. // J. Phys. Chem. Ref. Data. 1999. V. 28. № 1. P. 19. https://www.doi.org/10.1063/1.556035
  21. Jablonski A., Powell C.J. // J. Electron Spectros Relat. Phenomena. 2015. V. 199. P. 27. https://www.doi.org/10.1016/j.elspec.2014.12.011
  22. Ziegler J.P., Biersack U., Littmark J.F. The Stopping and Range of Ions in Solids. New York: Pergamon Press, 1985. 321 p.
  23. Medvedev N., Babaev P., Chalupský J., Juha L., Volkov A.E. // Phys. Chem. Chem. Phys. 2021. V. 23. № 30. P. 16193. https://www.doi.org/10.1039/D1CP02199K
  24. Jo S., Kim T., Iyer V.G., Im W. // J. Comput. Chem. 2008. V. 29. № 11. P. 1859. https://www.doi.org/10.1002/jcc.20945
  25. Abbott L.J., Hart K.E., Colina C.M. // Theor. Chem. Acc. 2013. V. 132. P. 1. https://www.doi.org/10.1007/s00214-013-1334-z
  26. Shirazi M.M.H., Khajouei-Nezhad M., Zebarjad S.M., Ebrahimi R. // Polym. Bull. 2020. V. 77. P. 1681. https://www.doi.org/10.1007/s00289-019-02827-7
  27. Berendsen H.J.C., Postma J.P.M., Gunsteren W.F., DiNola A., Haak J.R. // J. Chem. Phys. 1984. V. 81. № 8. P. 3684. https://www.doi.org/10.1063/1.448118
  28. Plimpton S. // J. Comput. Phys. 1995. V. 117. № 1. P. 1. https://www.doi.org/10.1006/jcph.1995.1039
  29. O′Connor T.C., Andzelm J., Robbins M. // J. Chem. Phys. 2015. V. 142. № 2. P. 024903. https://www.doi.org/10.1063/1.4905549
  30. Stukowski A. // Modelling Simul. Mater. Sci. Eng. 2009. V. 18. № 1. P. 015012. https://www.doi.org/10.1088/0965-0393/18/1/015012
  31. Rymzhanov R.A., Gorbunov S.A., Medvedev N., Volkov A.E. // Nucl. Instrum. Methods Phys. Res. B. 2019. V. 440. P. 25. https://www.doi.org/10.1016/j.nimb.2018.11.034
  32. Rymzhanov, R.A., Medvedev, N., Volkov, A.E. // J. Mater Sci. 2023. V. 58. P. 14072. https://www.doi.org/10.1007/s10853-023-08898-2

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Кривые потерь энергии иона ксенона (а) и урана (б) в мишени из полиэтилена.

Скачать (29KB)
3. Рис. 2. Радиальное распределение плотности энергии, выделенной в атомную подсистему мишени за 100 фс пролета иона ксенона (а) с энергией 30 (1), 300 (2, соответствует брэгговскому резонансу в полиэтилене) и 2090 МэВ (3); иона урана (б) с энергией 100 (1), 700 (2, брэгговский пик) и 5500 МэВ (3).

Скачать (32KB)
4. Рис. 3. Парные корреляционные функции, соответствующие связям углерод–водород (1, С-Н), углерод–углерод (2, С-С), водород–водород (3, Н-Н) при пролете урана с энергией 100 (а); 700 (б); 5500 МэВ (в) сквозь полиэтиленовую мишень.

Скачать (32KB)
5. Рис. 4. Вид на поврежденную ячейку со стороны налетающего иона урана с энергией 100 (а); 700 (б); 5500 МэВ (в). Визуализация сделана в программе Ovito.

Скачать (85KB)
6. Рис. 5. Зависимости линейных потерь энергии и числа атомов углерода с пониженным количеством связей от пройденного ионом ксенона (а) и урана (б) расстояния в полиэтелене. Стрелкой показаны: максимальное выделение энергии (1); максимальное количество разрывов (2).

Скачать (33KB)

© Институт физики твердого тела РАН, Российская академия наук, 2025