Stress influences and cognitive activity: search for targets and general mechanisms using Drosophila mutants
- Autores: Karovetskaya D.M.1,2, Medvedeva A.V.2, Tokmacheva E.V.2, Vasilyeva S.A.1,2, Rebrova A.V.1, Nikitina E.A.1,2, Shchegolev B.F.2, Savvateeva-Popova E.V.2
-
Afiliações:
- Russian State Pedagogical University named after A. I. Herzen
- Pavlov Institute of Physiology of Russian Academy of Sciences
- Edição: Volume 41, Nº 1 (2024)
- Páginas: 44-54
- Seção: Review Articles
- URL: https://modernonco.orscience.ru/1027-8133/article/view/653908
- DOI: https://doi.org/10.31857/S1027813324010065
- EDN: https://elibrary.ru/GZALWO
- ID: 653908
Citar
Resumo
According to modern concepts, biochemical cascades activated in response to stress impacts also contribute to cognitive functions, such as learning and memory formation. Considering a conditioned reflex as an adaptation to the external environment, one can assume its occurrence as a reaction to external challenges, which, when reinforced, contribute to the formation of a conditioned connection, and in the absence, cause the development of a stress response. The metabolic activity of the body is inextricably linked with circadian rhythms, which determine the daily fluctuations in light, temperature, oxygen content and magnetic field. The integration of these timers is carried out by a protein of the cryptochrome family (CRY), which functions as a blue light receptor and is known as a repressor of the main circadian transcription complex CLOCK/BMAL1. In order to develop methods for non-invasive correction of pathologies of the nervous system on a model object of genetics – Drosophila using mutant lines, the relationship between adaptive mechanisms for the formation of a conditioned connection and the development of a stress response to a weakening of the magnetic field, hypoxic and temperature effects is studied. The data are discussed in light of the role of the CRY/CLOCK/BMAL1 system as a link in magnetoreception, hypoxia, circadian rhythm regulation, cognitive functions, and DNA double-strand breaks in nerve ganglia (an indicator of the physiological activity of neurons).
Palavras-chave
Texto integral

Sobre autores
D. Karovetskaya
Russian State Pedagogical University named after A. I. Herzen; Pavlov Institute of Physiology of Russian Academy of Sciences
Email: 21074@mail.ru
Rússia, St. Petersburg; St. Petersburg
A. Medvedeva
Pavlov Institute of Physiology of Russian Academy of Sciences
Email: 21074@mail.ru
Rússia, St. Petersburg
E. Tokmacheva
Pavlov Institute of Physiology of Russian Academy of Sciences
Email: 21074@mail.ru
Rússia, St. Petersburg
S. Vasilyeva
Russian State Pedagogical University named after A. I. Herzen; Pavlov Institute of Physiology of Russian Academy of Sciences
Email: 21074@mail.ru
Rússia, St. Petersburg; St. Petersburg
A. Rebrova
Russian State Pedagogical University named after A. I. Herzen
Email: 21074@mail.ru
Rússia, St. Petersburg
E. Nikitina
Russian State Pedagogical University named after A. I. Herzen; Pavlov Institute of Physiology of Russian Academy of Sciences
Autor responsável pela correspondência
Email: 21074@mail.ru
Rússia, St. Petersburg; St. Petersburg
B. Shchegolev
Pavlov Institute of Physiology of Russian Academy of Sciences
Email: 21074@mail.ru
Rússia, St. Petersburg
E. Savvateeva-Popova
Pavlov Institute of Physiology of Russian Academy of Sciences
Email: 21074@mail.ru
Rússia, St. Petersburg
Bibliografia
- Лобашев М.Е., Савватеев В.Б. Физиология суточного ритма животных. М., Л.: Изд-во АН СССР, 1959. 259 с.
- Zatsepina O.G., Nikitina E.A., Shilova V.Y., Chuvakova L.N., Sorokina S., Vorontsova Yu.E., Tokmacheva E.V., Funikov S. Yu., Rezvykh A.P., Evgeniev M.B.// Cell Stress and Chaperones. 2021. V. 26. № 3. P. 575–594.
- Damulewicz M., Mazzotta G.M. // Front Physiol. 2020. V. 11. Art. 99.
- Agrawal P., Houl J.H., Gunawardhana K.L., Liu T., Zhou J., Zoran M.J., Hardin P.E. // Сurr Biol. 2017. V. 16. P. 2431–2441.
- Karki N., Vergish S., Zoltovski B.D. // Protein Science. 2021. V. 30. № 8. P. 1521–1534.
- Cusumano P., Damulewicz M., Carbognin E., Caccin L., Puricella V., Specchia M., Bozzetti P., Costa R., Mazzotta G.M. // Front Physiol. 2019. V. 10. Art. 133.
- Helfrich-Förster C. // Genes Brain Behav. 2005. V. 4. P. 65–76.
- Hermann-Luibl C., Helfrich-Förster C. // Curr. Opin. Insect Sci. 2015. V. 7. P. 65–70.
- Yoshii T., Ahmad M., Helfrich-Förster C. // PLoS Biol. 2009. V. 7. Art. 1000086.
- Shang Y., Haynes P., Pírez N., Harrington K.I., Guo F., Pollack J., Hong P., Griffith L.C., Rosbash M. // Nat Neurosci. 2011. V. 14. № 7. P. 889–895.
- Yamamoto Sh., Seto E.S. // Exp Anim. 2014. V. 63. № 2. P. 107–119.
- Tabuch M., Coates K.E., Bautista O.B., Zukowski L.H. // Front Neurol. 2021. V. 12. Art. 625369.
- Sitaraman D., Aso Y., Jin X. // Сurr Biol. 2015. V. 25. № 22. P. 2915–2927.
- Flyer-Adams J., Rivera-Rodriguez E.J., Yu J. Junwei Yu, Jacob D. Mardovin, Martha L. Reed, Leslie C. Griffith // J Neurosci. 2020. V. 40. P. 9066–9077.
- Fogle K., Parson K.G., Dahm N.A., Holmes T.C. // Science. 2011. V. 331. P. 1409–1413.
- Sitaraman D., Aso Y., Jin X. Rubin G.M.,Nitabach M.N. // Сurr Biol. 2015. V. 25. P. 2915–2927.
- Pokorny R., Klar T., Hennecke U., Carell T. // Proc Natl Acad Sci. 2008. V. 105. № 52. P. 21023–21027.
- Romero-Franco A., Checa-Rodríguez C., Maikel Castellano-Pozo M., Miras H., Wals A., Huertas P. // 22.01.2023 on bioRxiv preprint.
- Boutros S.W., Krenik D., Holden S., Vivek K. Unni, Raber J. // Oncotarget. 2022. V. 13. Р. 198–213.
- Никитина Е.А., Васильева С.А., Щеголев Б.Ф., Савватеева-Попова Е.В. // Журнал высшей нервной деятельности им. И.П. Павлова. 2022. Т. 72. № 6. С. 783–799.
- Eichwald C., Walleczek J. // Biophysical Journal. 1996. V. 71. № 2. P. 623–631.
- Izmaylov A.F., Tully J.C., Frisch M.J. // Journal of Physical Chemistry A. 2009. V. 113. № 44. P. 12276–12284.
- Rodgers C.T., Hore P.J. // Proceedings of the National Academy of Sciences of USA. 2009. V. 106. № 2. P. 353–360.
- Kaushik R., Nawathean P., Busza A., Murad A., Emery P., Rosbash M. // PLoS Biology. 2007. V. 5. № 6. P. 1257–1266.
- Solov’yov I.A., Schulten K. // Biophys. J. 2009. V. 96. № 12. P. 4804–4813.
- Nikitina E.A., Medvedeva A.V., Gerasimenko M.S., Pronikov V.S., Surma S.V., Shchegolev B.F., Savvateeva-Popova E.V. // Neuroscience and Behavioral Physiology. 2018. V. 48. № 7. P. 796–803.
- Nikitina E.A., Medvedeva A.V., Zakharov G.A., Savvateeva-Popova E.V. // Acta Naturae. 2014. V. 6. № 2. P. 53–61.
- Borovac J., Bosch M., Okamoto K. // Mol Cell Neurosci. 2018. V. 91. P. 122–130.
- Misu S., Takebayashi M., Kei M. // Frontiers in Genetics. 2017. V. 8. Art. 27.
- Kamyshev N.G., Iliadi K.G., Bragina J.V. // Learning & Memory. 1999. V. 6. № 1. P. 1–20.
- Vasilieva S.A., Tokmacheva E.V., Medvedeva A.V., Ermilova A.A., Nikitina E.A., Shchegolev B.F., Surma S.V., Savvateeva-Popova E.V. // Cell and Tissue Biology. 2020. V. 14. № 3. P. 178–189.
- Mehta N., Cheng H.Y.M. // J. Mol. Biol. 2012. V. 425. № 19. P. 3609–3624.
- Savvateeva-Popova E.V., Zhuravlev A.V., Brázda V., Zakharov G.A., Kaminskaya A.N., Medvedeva A.V., Nikitina E.A., Tokmatcheva E.V., Dolgaya J.F., Kulikova D.A., Zatsepina O.G., Funikov S.Y., Ryazansky S.S., Evgen’ev M.B.// Front. Genet. 2017. V. 8. Art. 123.
- Sempere L.F., Sokol N.S., Dubrovsky E.B., Berger EM, Ambros V. // Dev. Biol. 2003. V. 259. № 1. P. 9–18.
- Weng R., Chin J.S.R, Yew J.Y. // eLife. 2013. V. 2. Art. e00640.
- Xue Y., Zhang Y. // BMC Neurosci. 2018. V. 19. № 1. https://doi.org/10.1186/s12868–018–0401–8
- Медведева А.В., Реброва А.В., Заломаева Е.С. // Журнал эволюционной биохимии и физиологии. 2022. T. 58. № 1. C. 34–42.
- Adel M., Griffith L.C. // Neuroscience Bulletin. 2021. V. 37. № 6. P. 831–852.
- Davis R.L., Zhong Y. // Neuron. 2017. V. 95. P. 490–503.
- Kasture A.S., Hummel T., Sucic S., Freissmuth M. // International Journal of Molecular Sciences. 2018. V. 19. Art. 1788.
- Suberbielle E., Sanchez P.E., Kravitz A.V. // Nature Neuroscience. 2013. V. 16. № 5. P. 613–621.
- Verheijen B.M., Vermulst M., van Leeuwen F.W. // Acta Neuropathologica. 2018. V. 135. № 6. P. 811–826.
- Ishikawa T., Matsumoto A., Kato T. Jr., Togashi S., Ryo H., Ikenaga M., Todo T., Ueda R., Tanimura T. // Genes Cells. 1999. V. 4. № 1. P. 57–65.
- Smith K.D., Fu M.A., Brown E.J. // Journal of Cell Biology. 2009. V. 187. № 1. P. 15–23.
- Thöni V., Oliva R., Mauracher D., Egg M. // Chronobiology International. 2021. V. 38. № 8. P. 1120–1134.
- Bozek K., Kiełbasa S.M., Kramer A., Herzel H. // Genomics & Informatics. 2007. V. 18. P. 65–74.
- Peek C., Levine D.C., Cedernaes J., Taguchi A., Kobayashi Y., Tsai S.J., Bonar N.A., McNulty M.R., Ramsey K.M., Bass J. // Cell Metab. 2017. V. 25. № 1. P. 86–92.
- Elhalel G., Price C., Fixler D., Shainberg A. // Scientific Reports. 2019. V. 9. № 1. Art. 1645.
- Vaughan M.E., Wallace M., Handzlik M.K. // Science. 2020. V. 23. № 7. Art. 101338.
- Hernansanz-Agustín P., Enríquez J.A. // Antioxidants. 2021. V. 10. № 3. Art. 415.
- Бучаченко А.Л. // Усп. химии. 2014. Т. 83. № 1. С. 1–12.
- Srinivas U.S., Tan B.W.Q., Vellayappan B.A., Jeyasekharan A.D. // Redox Biology. 2019. V. 25. Art. 101084.
- Caldecott K.W., Ward M.E., Nussenzweig A. // Nature Genetics. 2022. V. 54. P. 115–120.
- Caridi C.P., Plessner М., Grosse R., Chiolo I. // Nat Cell Biol. 2019. V. 21. № 9. P. 1068–1077.
- Xu Q., Huff L., Fujii M., Griendling K. // Free Radic Biol Med. 2017. V. 109. P. 84–107.
- Медведева А.В., Токмачева Е.В., Никитина Е.А., Васильева С.А., Заломаева Е.С., Савватеева-Попова Е.В. // Медицинский академический журнал. 2020. T. 20. № 4. C. 45–54.
- Movafagh Sh., Crooc S., Vo K. // J Cell Biochem. 2015. V. 116. № 5. P. 696–703.
- Wozny A.-S., Gauthier A., Alphonse G. // Cancers. 2021. V. 13. № 15. Art. 3833.
- Cheng L., Yu H., Yan N., Lai K., Xiang M. // Front. Cell. Neurosci. 2017. V. 11. Art. 20.
- Bellemer A. // Temperature (Austin). 2015. V. 16. P. 2227–2243.
- Gentile C., Sehodova H., Chen Ch., Stanewsky R. // Сurr Biol. 2013. V. 23. P. 185–195.
- Yoshii T., Hermann Ch., Helfrich-Forster Ch. // J Biol Rhithms. 2010. V. 25. № 6. P. 387–398.
- D’Amico-Damião V., Carvalho R F. // Front. Plant Sci. 2018. V. 9. Art. 1897.
- Kidd P B., Young M V., Siggia E D. // PNAS. 2015. V. 112. № 46. Р. 6284–6292.
- Москалев А.А., Малышева О.А. // Экологическая генетика. 2010. Т. 8. С. 67–80.
- Никитина Е.А., Комарова А.В., Голубкова Е.В. // Генетика. 2003. Т. 39. № 3. С. 341–348.
- Nikitina E.A., Kaminskaya A.N., Molotkov D.A., Popov A.V., Savvateeva-Popova E.V. // Journal of Evolutionary Biochemistry and Physiology. 2014. V. 50. № 2. P. 154–166.
- Никитина Е.А., Медведева А.В., Долгая Ю.Ф. // Журнал эволюционной биохимии и физиологии. 2012. Т. 48. № 6. С. 588–596.
- Doshi B., Hightower L.E., Lee J. // Cell Stress Chaperones. 2009. V. 14. P. 445–457.
Arquivos suplementares
