A simple method for morphological assessment of astrocytes: sexual dimorphism in the maturation dynamics of astrocytes in the rat amygdala
- 作者: Manolova А.O.1, Lazareva N.A.1, Paramonova A.E.1, Kvichansky A.А.1, Odrinskaya М.S.1, Stepanichev M.Y.1, Gulyaeva N.V.1
-
隶属关系:
- Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
- 期: 卷 41, 编号 3 (2024)
- 页面: 294-301
- 栏目: МЕТОДЫ
- URL: https://modernonco.orscience.ru/1027-8133/article/view/653894
- DOI: https://doi.org/10.31857/S1027813324030092
- EDN: https://elibrary.ru/EPZFTX
- ID: 653894
如何引用文章
详细
Simple, affordable and reliable methods for assessing the status of brain structures maturation are vital for preclinical studies related to the effects of early-life stress. These methods make it possible to evaluate the effectiveness of specific therapies or the prevention of stress-related pathological changes. The morphology of astrocytes is one of the markers representing functional state of synapses and thus it is indicative of maturation state of neuronal networks. We performed the method for evaluating the morphological characteristics of astrocytes using epifluorescence microscopy and the ImageJ program. Application of the method to brain sections of rats on postnatal days 18 and 30 revealed the dynamics of morphological changes in the astrocytes of the basolateral nucleus of the amygdala during normal ontogenesis. The proposed method makes it possible to evaluate not only the density of the cell population, but also their morphological parameters associated with the degree of branching and the length of the astrocyte processes. The approach used revealed sexual dimorphism in the ontogenesis: the length of the astrocytic processes increased during maturation from juvenile to pubertal period in the basolateral nucleus of the amygdala only in female rats, but not in males.
全文:

作者简介
А. Manolova
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
编辑信件的主要联系方式.
Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow
N. Lazareva
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow
A. Paramonova
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow
A. Kvichansky
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow
М. Odrinskaya
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow
M. Stepanichev
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow
N. Gulyaeva
Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS
Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow
参考
- Dennison M., Whittle S., Yücel M., Vijayakumar N., Kline A., Simmons J., Allen N.B. // Dev. Sci. 2013. V. 16. P. 772–791. doi: 10.1111/desc.12057.
- Fish A.M., Nadig A., Seidlitz J., Reardon P.K., Mankiw C., McDermott C.L., Blumenthal J.D., Clasen L.S., Lalonde F., Lerch J.P., Chakravarty M.M., Shinohara R.T., Raznahan A. // NeuroImage. 2020. V. 204. P. 116122. doi: 10.1016/j.neuroimage.2019.116122.
- Verwer R.W.H., Van Vulpen E.H.S., Van Uum J.F.M. // J. Comp. Neurol. 1996, 376, 75–96. doi: 10.1002/(SICI)1096-9861(19961202)376:1<75::AID-CNE5>3.0.CO,2-L.
- Arruda-Carvalho M., Wu W.-C., Cummings K.A., Clem R.L. // J. Neurosci. 2017. V. 37. P. 2976–2985. doi: 10.1523/JNEUROSCI.3097-16.2017.
- Wierenga L.M., Bos M.G.N., Schreuders E., Vd Kamp F., Peper J.S., Tamnes C.K., Crone E.A. // Psychoneuroendocrinology. 2018. V. 91. P. 105–114. doi: 10.1016/j.psyneuen.2018.02.034.
- Frere P.B., Vetter N.C., Artiges E., Filippi I., Miranda R., Vulser H., Paillère-Martinot M.-L., Ziesch V., Conrod P., Cattrell A., Walter H., Gallinat J., Bromberg U., Jurk S., Menningen E., Frouin V., Papadopoulos Orfanos D., Stringaris A., Penttilä J., Van Noort B., Grimmer Y., Schumann G., Smolka M.N., Martinot J.-L., Lemaître H. // NeuroImage. 2020. V. 210. P. 116441. doi: 10.1016/j.neuroimage.2019.116441.
- Simerly R.B., Swanson L.W., Chang C., Muramatsu M. // J. Comp. Neurol. 1990. V. 294. P. 76–95. doi: 10.1002/cne.902940107.
- Cahill L., Uncapher M., Kilpatrick L., Alkire M.T., Turner J. // Learn. Mem. 2004. V. 11. P. 261–266. doi: 10.1101/lm.70504.
- Cooke B.M., Stokas M.R., Woolley C.S. // J. Comp. Neurol. 2007. V. 501. P. 904–915. doi: 10.1002/cne.21281.
- Kilpatrick L.A., Zald D.H., Pardo J.V., Cahill L.F. // NeuroImage. 2006. V. 30. P. 452–461. doi: 10.1016/j.neuroimage.2005.09.065.
- Clarke L.E., Barres B.A. // Nat. Rev. Neurosci. 2013. V. 14. P. 311–321. doi: 10.1038/nrn3484.
- Nägler K., Mauch D.H., Pfrieger F.W. // J. Physiol. 2001. V. 533. P. 665–679. doi: 10.1111/j.1469-7793.2001.00665.x.
- Pfrieger F.W., Barres B.A. // Science. 1997. V. 277. P. 1684–1687. doi: 10.1126/science.277.5332.1684.
- Johnson R.T., Breedlove S.M., Jordan C.L. // Astrocytes in the Amygdala / In Vitamins & Hormones. Elsevier, 2010. Vol. 82. P 23–45. doi: 10.1016/S0083-6729(10.82002-3.
- Mong J.A., Kurzweil R.L., Davis A.M., Rocca M.S., McCarthy M.M. // Horm. Behav. 1996. V. 30. P. 553–562. doi: 10.1006/hbeh.1996.0058.
- Milner T.A., McEwen B.S., Hayashi S., Li C.J., Reagan L.P., Alves S.E. // J. Comp. Neurol. 2001. V. 429. P. 355–371.
- Johnson R.T., Breedlove S.M., Jordan C.L. // J. Comp. Neurol. 2013. V. 521. P. 2298–2309. doi: 10.1002/cne.23286.
- Khazipov R., Zaynutdinova D., Ogievetsky E., Valeeva G., Mitrukhina O., Manent J.-B., Represa A. // Front. Neuroanat. 2015. V. 9. doi: 10.3389/fnana.2015.00161.
- Paxinos G., Watson C. // The Rat Brain in Stereotaxic Coordinates, 3. ed. / Academic Press: San Diego, Calif., 1997.
- Martinez F.G., Hermel E.E.S., Xavier L.L., Viola G.G., Riboldi J., Rasia-Filho A.A., Achaval M. // Brain Res. 2006. V. 1108. P. 117–126. doi: 10.1016/j.brainres.2006.06.014.
- Conejo N.M., González‐Pardo H., Cimadevilla J.M., Argüelles J.A., Díaz F., Vallejo‐Seco G., Arias J.L. // J. Neurosci. Res. 2005. V. 79. P. 488–494. doi: 10.1002/jnr.20372.
- Immenschuh J., Thalhammer S.B., Sundström-Poromaa I., Biegon A., Dumas S., Comasco E. // Biol. Sex Differ. 2023. V. 14. P. 54. doi: 10.1186/s13293-023-00541-8.
- Brenner M., Messing A. // ASN Neuro. 2021. V. 13. P. 175909142098120. doi: 10.1177/1759091420981206.
- Khan M.M., Hadman M., Wakade C., De Sevilla L.M., Dhandapani K.M., Mahesh V.B., Vadlamudi R.K., Brann D.W. // Endocrinology. 2005. V. 146. P. 5215–5227. doi: 10.1210/en.2005-0276.
- Elmariah S.B., Hughes E.G., Oh E.J., Balice-Gordon R.J. // Neuron Glia Biol. 2004. V. 1. P. 339–349. doi: 10.1017/S1740925X05000189.
- Bushong E.A., Martone M.E., Jones Y.Z., Ellisman M.H. // J. Neurosci. 2002. V. 22. P. 183–192. doi: 10.1523/JNEUROSCI.22-01-00183.2002.
- Reeves A.M.B., Shigetomi E., Khakh B.S. // J. Neurosci. 2011. V. 31. P. 9353–9358. doi: 10.1523/JNEUROSCI.0127-11.2011.
- Bondi H., Bortolotto V., Canonico P.L., Grilli M. // Neurobiol. Aging. 2021. V. 100. P. 59–71. doi: 10.1016/j.neurobiolaging.2020.12.018.
- Tavares G., Martins M., Correia J.S., Sardinha V.M., Guerra-Gomes S., Das Neves S.P., Marques F., Sousa N., Oliveira J.F. // Brain Struct. Funct. 2017. V. 222. P. 1989–1999. doi: 10.1007/s00429-016-1316-8.
- Baldwin K.T., Murai K.K., Khakh B.S. // Trends Cell Biol. 2023. S0962892423002040. doi: 10.1016/j.tcb.2023.09.006.
- Nedergaard M., Ransom B., Goldman S.A. // Trends Neurosci. 2003. V. 26. P. 523–530. doi: 10.1016/j.tins.2003.08.008.
- Krebs-Kraft D.L., Hill M.N., Hillard C.J., McCarthy M.M. // Proc. Natl. Acad. Sci. 2010. V. 107. P. 20535–20540. doi: 10.1073/pnas.1005003107.
- Mohr M.A., Michael N.S., DonCarlos L.L., Sisk C.L. // Dev. Cogn. Neurosci. 2022. V. 57. P. 101141. doi: 10.1016/j.dcn.2022.101141.
- Johnson R.T., Schneider A., DonCarlos L.L., Breedlove S.M., Jordan C.L. // J. Comp. Neurol. 2012. V. 520. P. 2531–2544. doi: 10.1002/cne.23061.
补充文件
