A simple method for morphological assessment of astrocytes: sexual dimorphism in the maturation dynamics of astrocytes in the rat amygdala

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

Simple, affordable and reliable methods for assessing the status of brain structures maturation are vital for preclinical studies related to the effects of early-life stress. These methods make it possible to evaluate the effectiveness of specific therapies or the prevention of stress-related pathological changes. The morphology of astrocytes is one of the markers representing functional state of synapses and thus it is indicative of maturation state of neuronal networks. We performed the method for evaluating the morphological characteristics of astrocytes using epifluorescence microscopy and the ImageJ program. Application of the method to brain sections of rats on postnatal days 18 and 30 revealed the dynamics of morphological changes in the astrocytes of the basolateral nucleus of the amygdala during normal ontogenesis. The proposed method makes it possible to evaluate not only the density of the cell population, but also their morphological parameters associated with the degree of branching and the length of the astrocyte processes. The approach used revealed sexual dimorphism in the ontogenesis: the length of the astrocytic processes increased during maturation from juvenile to pubertal period in the basolateral nucleus of the amygdala only in female rats, but not in males.

全文:

受限制的访问

作者简介

А. Manolova

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

编辑信件的主要联系方式.
Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow

N. Lazareva

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow

A. Paramonova

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow

A. Kvichansky

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow

М. Odrinskaya

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow

M. Stepanichev

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow

N. Gulyaeva

Federal state budget institution Institute of Higher Nervous Activity and Neurophysiology RAS

Email: anna.manolova@ihna.ru
俄罗斯联邦, Moscow

参考

  1. Dennison M., Whittle S., Yücel M., Vijayakumar N., Kline A., Simmons J., Allen N.B. // Dev. Sci. 2013. V. 16. P. 772–791. doi: 10.1111/desc.12057.
  2. Fish A.M., Nadig A., Seidlitz J., Reardon P.K., Mankiw C., McDermott C.L., Blumenthal J.D., Clasen L.S., Lalonde F., Lerch J.P., Chakravarty M.M., Shinohara R.T., Raznahan A. // NeuroImage. 2020. V. 204. P. 116122. doi: 10.1016/j.neuroimage.2019.116122.
  3. Verwer R.W.H., Van Vulpen E.H.S., Van Uum J.F.M. // J. Comp. Neurol. 1996, 376, 75–96. doi: 10.1002/(SICI)1096-9861(19961202)376:1<75::AID-CNE5>3.0.CO,2-L.
  4. Arruda-Carvalho M., Wu W.-C., Cummings K.A., Clem R.L. // J. Neurosci. 2017. V. 37. P. 2976–2985. doi: 10.1523/JNEUROSCI.3097-16.2017.
  5. Wierenga L.M., Bos M.G.N., Schreuders E., Vd Kamp F., Peper J.S., Tamnes C.K., Crone E.A. // Psychoneuroendocrinology. 2018. V. 91. P. 105–114. doi: 10.1016/j.psyneuen.2018.02.034.
  6. Frere P.B., Vetter N.C., Artiges E., Filippi I., Miranda R., Vulser H., Paillère-Martinot M.-L., Ziesch V., Conrod P., Cattrell A., Walter H., Gallinat J., Bromberg U., Jurk S., Menningen E., Frouin V., Papadopoulos Orfanos D., Stringaris A., Penttilä J., Van Noort B., Grimmer Y., Schumann G., Smolka M.N., Martinot J.-L., Lemaître H. // NeuroImage. 2020. V. 210. P. 116441. doi: 10.1016/j.neuroimage.2019.116441.
  7. Simerly R.B., Swanson L.W., Chang C., Muramatsu M. // J. Comp. Neurol. 1990. V. 294. P. 76–95. doi: 10.1002/cne.902940107.
  8. Cahill L., Uncapher M., Kilpatrick L., Alkire M.T., Turner J. // Learn. Mem. 2004. V. 11. P. 261–266. doi: 10.1101/lm.70504.
  9. Cooke B.M., Stokas M.R., Woolley C.S. // J. Comp. Neurol. 2007. V. 501. P. 904–915. doi: 10.1002/cne.21281.
  10. Kilpatrick L.A., Zald D.H., Pardo J.V., Cahill L.F. // NeuroImage. 2006. V. 30. P. 452–461. doi: 10.1016/j.neuroimage.2005.09.065.
  11. Clarke L.E., Barres B.A. // Nat. Rev. Neurosci. 2013. V. 14. P. 311–321. doi: 10.1038/nrn3484.
  12. Nägler K., Mauch D.H., Pfrieger F.W. // J. Physiol. 2001. V. 533. P. 665–679. doi: 10.1111/j.1469-7793.2001.00665.x.
  13. Pfrieger F.W., Barres B.A. // Science. 1997. V. 277. P. 1684–1687. doi: 10.1126/science.277.5332.1684.
  14. Johnson R.T., Breedlove S.M., Jordan C.L. // Astrocytes in the Amygdala / In Vitamins & Hormones. Elsevier, 2010. Vol. 82. P 23–45. doi: 10.1016/S0083-6729(10.82002-3.
  15. Mong J.A., Kurzweil R.L., Davis A.M., Rocca M.S., McCarthy M.M. // Horm. Behav. 1996. V. 30. P. 553–562. doi: 10.1006/hbeh.1996.0058.
  16. Milner T.A., McEwen B.S., Hayashi S., Li C.J., Reagan L.P., Alves S.E. // J. Comp. Neurol. 2001. V. 429. P. 355–371.
  17. Johnson R.T., Breedlove S.M., Jordan C.L. // J. Comp. Neurol. 2013. V. 521. P. 2298–2309. doi: 10.1002/cne.23286.
  18. Khazipov R., Zaynutdinova D., Ogievetsky E., Valeeva G., Mitrukhina O., Manent J.-B., Represa A. // Front. Neuroanat. 2015. V. 9. doi: 10.3389/fnana.2015.00161.
  19. Paxinos G., Watson C. // The Rat Brain in Stereotaxic Coordinates, 3. ed. / Academic Press: San Diego, Calif., 1997.
  20. Martinez F.G., Hermel E.E.S., Xavier L.L., Viola G.G., Riboldi J., Rasia-Filho A.A., Achaval M. // Brain Res. 2006. V. 1108. P. 117–126. doi: 10.1016/j.brainres.2006.06.014.
  21. Conejo N.M., González‐Pardo H., Cimadevilla J.M., Argüelles J.A., Díaz F., Vallejo‐Seco G., Arias J.L. // J. Neurosci. Res. 2005. V. 79. P. 488–494. doi: 10.1002/jnr.20372.
  22. Immenschuh J., Thalhammer S.B., Sundström-Poromaa I., Biegon A., Dumas S., Comasco E. // Biol. Sex Differ. 2023. V. 14. P. 54. doi: 10.1186/s13293-023-00541-8.
  23. Brenner M., Messing A. // ASN Neuro. 2021. V. 13. P. 175909142098120. doi: 10.1177/1759091420981206.
  24. Khan M.M., Hadman M., Wakade C., De Sevilla L.M., Dhandapani K.M., Mahesh V.B., Vadlamudi R.K., Brann D.W. // Endocrinology. 2005. V. 146. P. 5215–5227. doi: 10.1210/en.2005-0276.
  25. Elmariah S.B., Hughes E.G., Oh E.J., Balice-Gordon R.J. // Neuron Glia Biol. 2004. V. 1. P. 339–349. doi: 10.1017/S1740925X05000189.
  26. Bushong E.A., Martone M.E., Jones Y.Z., Ellisman M.H. // J. Neurosci. 2002. V. 22. P. 183–192. doi: 10.1523/JNEUROSCI.22-01-00183.2002.
  27. Reeves A.M.B., Shigetomi E., Khakh B.S. // J. Neurosci. 2011. V. 31. P. 9353–9358. doi: 10.1523/JNEUROSCI.0127-11.2011.
  28. Bondi H., Bortolotto V., Canonico P.L., Grilli M. // Neurobiol. Aging. 2021. V. 100. P. 59–71. doi: 10.1016/j.neurobiolaging.2020.12.018.
  29. Tavares G., Martins M., Correia J.S., Sardinha V.M., Guerra-Gomes S., Das Neves S.P., Marques F., Sousa N., Oliveira J.F. // Brain Struct. Funct. 2017. V. 222. P. 1989–1999. doi: 10.1007/s00429-016-1316-8.
  30. Baldwin K.T., Murai K.K., Khakh B.S. // Trends Cell Biol. 2023. S0962892423002040. doi: 10.1016/j.tcb.2023.09.006.
  31. Nedergaard M., Ransom B., Goldman S.A. // Trends Neurosci. 2003. V. 26. P. 523–530. doi: 10.1016/j.tins.2003.08.008.
  32. Krebs-Kraft D.L., Hill M.N., Hillard C.J., McCarthy M.M. // Proc. Natl. Acad. Sci. 2010. V. 107. P. 20535–20540. doi: 10.1073/pnas.1005003107.
  33. Mohr M.A., Michael N.S., DonCarlos L.L., Sisk C.L. // Dev. Cogn. Neurosci. 2022. V. 57. P. 101141. doi: 10.1016/j.dcn.2022.101141.
  34. Johnson R.T., Schneider A., DonCarlos L.L., Breedlove S.M., Jordan C.L. // J. Comp. Neurol. 2012. V. 520. P. 2531–2544. doi: 10.1002/cne.23061.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Stages of astrocyte image processing from micrograph to skeleton graph using the example of more (a–c) and less (d–e) branched cells. a, g – micrograph of astrocyte, b, d – binarized image, c, e – skeletonized image. Scale bar – 10 µm.

下载 (160KB)
3. Fig. 2. Results of statistical processing of the obtained morphological characteristics. a – increase in the astrocyte population density in the basolateral nucleus of the amygdala with age: F(1, 26) = 5.46, p = 0.027, no gender effect. b – increase in the average length of the skeleton graph edge was found in females, but not in males: “gender” * “age” – (F(1, 22) = 4 .52, p = 0.045), males PD18 vs females PD18 – p = 0.040, females PD18 vs females PD30 ‒ (p = 0.011) (Tukey post hoc). The average value for the group is indicated by a horizontal bar.

下载 (101KB)

版权所有 © Russian Academy of Sciences, 2024