Anxiogenic effect of pentylenetetrazole in a subconvulsive dose is accompanied by decreased cellular proliferation and neuronal NO-synthase expression in the posterior portion of the hippocampus

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In our previous studies, we have found a suppressive effect of a single administration of pentylenetetrazole (PTZ) in a subconvulsive dose on cellular proliferation in the dentate gyrus. In the present work, we show that this decrease in proliferation develops after acute anxiogenic effect of PTZ and is present only in the posterior portion of the hippocampus, where a decrease in the number of neuronal NO synthase expressing cells has been also found. These changes are also accompanied by a decrease in the level of nNOS protein in the hippocampus. Taken together, these observations may indicate the possible involvement of nNOS in the suppression of cellular proliferation in the dentate gyrus of the posterior hippocampus during the development of the anxiogenic effect of PTZ.

Full Text

Restricted Access

About the authors

V. А. Aniol

Institute of Higher Nervous Activity and Neurophysiology, RAS

Author for correspondence.
Email: aniviktor@yandex.ru
Russian Federation, Moscow

М. Yu. Stepanichev

Institute of Higher Nervous Activity and Neurophysiology, RAS

Email: aniviktor@yandex.ru
Russian Federation, Moscow

A. А. Yakovlev

Institute of Higher Nervous Activity and Neurophysiology, RAS

Email: aniviktor@yandex.ru
Russian Federation, Moscow

N. А. Lazareva

Institute of Higher Nervous Activity and Neurophysiology, RAS

Email: aniviktor@yandex.ru
Russian Federation, Moscow

N. V. Gulyaeva

Institute of Higher Nervous Activity and Neurophysiology, RAS

Email: aniviktor@yandex.ru
Russian Federation, Moscow

References

  1. Eriksson P.S., Perfilieva E., Björk-Eriksson T., Alborn A.M., Nordborg C., Peterson D.A., Gage F.H. // Nat. Med. 1998. V. 4. № 11. P. 1313‒1317.
  2. Boldrini M., Fulmore C.A., Tartt A.N., Simeon L.R., Pavlova I., Poposka V, Rosoklija G.B., Stankov A., Arango V., Dwork A.J., Hen R., Mann J.J. // Cell Stem Cell. 2018. V. 22. № 4. P. 589−599.e5.
  3. Kempermann G., Gage F.H., Aigner L., Song H., Curtis M.A., Thuret S., Kuhn H.G., Jessberger S., Frankland P.W., Cameron H.A., Gould E., Hen R., Abrous D.N., Toni N., Schinder A.F., Zhao X., Lucassen P.J., Frisén J. // Cell Stem Cell. 2018. pii: S1934-5909(18)30166-8.
  4. Sorrells S.F., Paredes M.F., Cebrian-Silla A., Sandoval K., Qi D., Kelley K.W., James D., Mayer S., Chang J., Auguste K.I., Chang E.F., Gutierrez A.J., Kriegstein A.R., Mathern G.W., Oldham M.C., Huang E.J., Garcia-Verdugo J.M., Yang Z., Alvarez-Buylla A. // Nature. 2018. V. 555. № 7696. P. 377−381.
  5. Cameron H.A., Woolley C.S., McEwen B.S., Gould E. // Neuroscience. 1993. V. 56. № 2. P. 337–344.
  6. Gage F.H. // Science. 2000. V. 287. № 5457. P. 1433–1438.
  7. Scharfman H.E., McCloskey D.P. // Epilepsy Res. 2009. V. 85. № 2−3. P. 150−161.
  8. Yun S., Reynolds R.P., Masiulis I., Eisch A.J. // Nat. Med. 2016. V. 22. № 11. P. 1239–1247.
  9. Aniol V.A., Stepanichev M.Y., Lazareva N.A., Gulyaeva N.V. // Epilepsy Behav. 2011. V. 22. № 3. P. 433−441.
  10. Gould E., McEwen B.S., Tanapat P., Galea L.A., Fuchs E. // J. Neurosci. 1997. V. 17. № 7. P. 2492–2498.
  11. Brummelte S., Galea L.A. // Neuroscience. 2010. V. 168. № 3. P. 680–690.
  12. Aniol V.A., Stepanichev M.Y. // Neurochem. J. 2007. V. 1. P. 265–274.
  13. Gray W.P., Sundstrom L.E. // Brain Res. 1998. V. 790. P. 52−59.
  14. Paxinos G., Watson Ch. // The rat brain in stereotaxic coordinates. San Diego: Academic Press, Inc., 1998.
  15. Racine R.J. // Electroencephalogr. Clin. Neurophysiol. 1972. V. 32. P. 281−294.
  16. Ito M., Chiu T.H., Rosenberg H.C. // Neurochem. Res. 1986. V. 11. № 5. P. 637−646.
  17. Olsen R.W. // Mol. Cell. Biochem. 1981. V. 39. P. 261−279.
  18. Bazyan A.S., Zhulin V.V., Karpova M.N., Klishina N.Y., Glebov R.N. // Brain Res. 2001. V. 888. № 2. P. 212−220.
  19. Corda M., Orlandi M., Lecca D., Giorgi O. // J. Pharmacol. Exp. Ther. 1992. V. 262. P. 792−798.
  20. Ekonomou A., Smith A.L., Angelatou F. // Mol. Brain Res. 2001. V. 95. P. 27−35.
  21. Rodin E.A., Calhoun H.D. // J. Nerv. Ment. Dis. 1970. V. 150. № 6. P. 438−443.
  22. Rodin E.A., Rutledge L.T., Calhoun H.D. // Electroencephalogr. Clin. Neurophysiol. 1958. V. 10. № 4. P. 719−723.
  23. Benjamin D., Lal H., Meyerson L.R. // Life Sci. 1990. V. 47. № 3. P. 195−203.
  24. Giusti P., Guidetti G., Costa E., Guidotti A. // J. Pharmacol. Exp. Ther. 1991. V. 257. № 3. P. 1062−1068.
  25. Rodgers R.J., Cole J.C., Aboualfa K., Stephenson L.H. // Pharm. Biochem. Behav. 1995. V. 52. № 4. P. 805−813.
  26. Gould E., Gross C.G. // J. Neurosci. 2002. V. 22. № 3. P. 619−623.
  27. Snyder J.S., Radik R., Wojtowicz J.M., Cameron H.A. // Hippocampus. 2009. V. 19. № 4. P. 360−370.
  28. Snyder J.S., Ramchand P., Rabbett S., Radik R., Wojtowicz J.M., Cameron H.A. // Neurobiol. Aging. 2011. V. 32. № 6. P. 1149−1156.
  29. Jiang W., Xiao L., Wang J.C., Huang Y.G., Zhang X. // Neurosci. Lett. 2004. V. 367. P. 344−348.
  30. Bashkatova V., Vitskova G., Narkevich V., Vanin A., Mikoyan V., Rayevsky K. // J. Mol. Neurosci. 2000. V. 14. P. 183–190.
  31. Kaneko K., Itoh K., Berliner L.J., Miyasaka K., Fujii H. // Magn. Reson. Med. 2002. V. 48. P. 1051−1056.
  32. Яковлев А.А., Перегуд Д.И., Павлова Т.В., Гуляева Н.В. // Нейрохимия. 2004. Т. 21. № 1. С. 58−67.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Animal behavior in the elevated plus maze test. Number of entries (a) and time in the open arm (b), total number of crossed sectors (c) and their proportion in the light arm (d), number of rearings (d) and hangings (e). Data are presented as M ± SEM. # – p < 0.1, * – p < 0.05, *** – p < 0.005, Mann-Whitney test, difference from the control group.

Download (161KB)
3. Fig. 2. Cell proliferation in the germinal zone of the dentate gyrus after administration of PTZ at a subconvulsive dose. a – arrows indicate immunohistochemical staining of BrdU incorporation into cell nuclei at the border of the granular (gr) and polymorphic (pol) layers of the dentate gyrus (magnification ×400, scale 100 μm). b – number of BrdU+ cells in the dentate gyrus of the anterior and posterior hippocampus. Data are presented as M ± SEM. * – difference from the control group, p < 0.05, Mann-Whitney test.

Download (109KB)
4. Fig. 3. Immunohistochemical staining of nNOS in brain cells after administration of PTZ at a subconvulsive dose. a – d, the number of nNOS+ cells in different parts of the hippocampus (a – in the pyramidal layer of field CA1, b – in the dentate gyrus, c – in field CA4, d – in the radial layer of fields CA1-CA3). Data are presented as M ± SEM separately for the anterior and posterior parts of the hippocampus. * – difference from the control group, p < 0.05, Mann-Whitney test. d – the number of nNOS+ cells in the neocortex, no differences between groups. f – h, examples of immunohistochemical staining of nNOS in different parts of the brain (f – neocortex, g – dentate gyrus, h – after CA1, magnification ×400, scale bar 100 μm for all images). The dotted line indicates the boundaries between the granular (gr) and polymorphic (pol) layers of the dentate gyrus (g) and the pyramidal (pir) and radial (rad) layers of the CA1 field (z).

Download (267KB)
5. Fig. 4. Determination of nNOS protein by Western blot in the brain after administration of PTZ in a subconvulsive dose. a – hippocampus, b – neocortex. The results are presented as the ratio of the optical densities of the nNOS and α-tubulin bands and are expressed in relative units. The data are presented as M ± SEM. * – difference from the control group, p < 0.05, Mann-Whitney test.

Download (64KB)

Copyright (c) 2024 Russian Academy of Sciences