Splitting of a strip consisting of two identical orthotropic half-strips with isotropy axes symmetrically inclined to the interface

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

An exact analytical solution is obtained for the two-dimensional problem of a strip composed by two half-strips of equal thickness from the same linearly elastic orthotropic material with the main axes of the elasticity tensor symmetrically inclined to the interface and a central semi-infinite crack running along the interface. A self-balanced system of loads is assumed to be applied sufficiently far from the crack tip. For four independent active loading modes, expressions for stress intensity factors are found in the form of combinations of elementary functions or single integrals of combinations of elementary functions depending on three independent parameters.

Толық мәтін

Рұқсат жабық

Авторлар туралы

K. Ustinov

A.Yu. Ishlinsky Institute for problem in Mechanics RAS

Хат алмасуға жауапты Автор.
Email: ustinov@ipmnet.ru
Ресей, Moscow

N. Borisova

Federal State Educational Institution of Higher Education “Prince Alexander Nevsky Military University” of the Ministry of Defense of the Russian Federation

Email: nbolo@yandex.ru
Ресей, Moscow

Әдебиет тізімі

  1. Obreimoff J.W. The splitting strength of mica // Proc. R. Soc. A Math. Phys. Eng. Sci. 1930. 127. P. 290–297.
  2. Zlatin A.N., Khrapkov A.A. A Semi-Infinite Crack Parallel to the Boundary of the Elastic Half-Plane // Sov. Phys. Dokl. 1986. 31, P. 1009–1010.
  3. Ustinov K.B. On separation of a layer from the half-plane: elastic fixation conditions for a plate equivalent to the layer // Mech. Solids. 2015. 50 (1). P. 62–80. https://doi.org/10.3103/S0025654415010070
  4. Dundurs J. Edge-bonded dissimilar orthogonal elastic wedges under normal andshear loading // J. Appl. Mech. Trans. ASME. 1969. 36. N. 3. P. 650–651. https://doi.org/10.1115/1.3564739
  5. Entov V., Salganik R. On beam approximation in crack theory // Izv. AN SSSR. Mehanika 1965. 5, P. 95–102 (In Russian)
  6. Fichter W. The stress intensity factor for the double cantilever beam // Int. J. Fract. 1983. 22 (2). P. 133–143. https://doi.org/10.1007/BF00942719
  7. Foote R., Buchwald V. An exact solution for the stress intensity factor for a double cantilever beam // Int. J. Fract. 1985. 29 (3). P. 125–134. https://doi.org/10.1007/BF00034313
  8. Khrapkov A. Winer-Hopf Method in Mixed Elasticity Theory Problems. B.E.Vedeneev VNIIG Publishing House. 2001. 143 p.
  9. Ustinov K.B. On semi-infinite interface crack in bi-material elastic layer // European Journal of Mechanics – A/Solids. 2019. V. 75. N. 3. P. 56–69. https://doi.org/10.1016/j.euromechsol.2019.01.013
  10. Suo Z., Hutchinson J.W. Interface crack between two elastic layers // Int. J. Fract. 1990. 43. P. 1–18. https://doi.org/10.1007/BF00018123
  11. Hutchinson J.W., Suo Z. Mixed Mode Cracking in Layered Materials. Advances in Applied Mechanics edited by J. W. Hutchinson and T. Y. Wu. 1992. 29. P. 63–191. https://doi.org/10.1016/S0065-2156(08)70164-9
  12. Begley M.R, Hutchinson J.W. The Mechanics and Reliability of Films, Multilayers and Coatings. Cambridge University Press, 2017. P. 106–118. https://doi.org/10.1017/9781316443606.007
  13. Li S., Wang J., Thouless M.D. The effects of shear on delamination in layered materials // J. Mech. Phys. of Solids. 2004. 52 (1). P. 193–214. https://doi.org/10.1016/S0022-5096(03)00070-X
  14. Andrews M.G., Massabò R. The effects of shear and near tip deformations on energy release rate and mode mixity of edge-cracked orthotropic layers // Eng. Fract. Mech. 2007. 74. P. 2700–2720. https://doi.org/10.1016/j.engfracmech.2007.01.013
  15. Thouless M.D., Shear Forces, Root Rotations, Phase Angles and Delamination of Layered Materials // Eng. Fract. Mech. 2018. 191. P. 153–167. https://doi.org/10.1016/j.engfracmech.2018.01.033
  16. Suo Z. Delamination specimens for orthotropic materials // J. Appl. Mech. 1990 V. 57. P. 627–634. https://doi.org/10.1115/1.2897068.
  17. Bao G., Ho S., Suo Z., Fan B. The role of material orthotropy in fracture specimens for composites // Int. J, Sol. Struct. 1992. 29 ( 9). P. 1105–1116. https://doi.org/10.1016/0020-7683(92)90138-j
  18. Massabò R., Brandinelli L., Cox B.N. Mode I weight functions for an orthotropic double cantilever beam // Int. J. Eng. Sci. 2003. 41. P. 1497–1518. https://doi.org/10.1016/S0020-7225(03)00029-6
  19. Brandinelli L, Massabò R. Mode II weight functions for isotropic and orthotropic double cantilever beams // Int. J. Fract. 2006. 139. P. 1–25. https://doi.org/10.1007/s10704-006-6358-0.
  20. Georgiadis H.G., Papadopoulos G.A. Elastostatics of the orthotropic double-cantilever-beam fracture specimen // J. Appl. Math. Phys. (ZAMP) 1990. 41. P. 889–899. https://doi.org/10.1007/BF00945841
  21. Ustinov K., Massabò R., Lisovenko D. Orthotropic strip with central semi-infininite crack under arbitrary loads applied far apart from the crack tip. Analytical solution // Eng. Failure Analysis, 2020. 100. P. 104410. doi: 10.1016/j.engfailanal.2020.104410.
  22. Ustinov K.B., Idrisov D.M. On delamination of bi-layers composed by orthotropic materials: exact analytical solutions for some particular cases // ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik. 2020. 101. Is 4. e202000239. doi: 10.1002/zamm.20200023
  23. Wang T.C., Shih, C.F. Suo Z. Crack extension and kinking in laminates and bicrystals // Int. J. Sol. Struct. 1992. 29. P. 327–344. doi: 10.1016/0020-7683(92)90203-6
  24. Suo Z., Bao G., Fan B., Wang T.C. Orthotropy rescaling and implications for fracture in composites // Int. J. Sol. Struct. 1991. 28(2). P. 235–248. doi: 10.1016/0020-7683(91)90208-W
  25. Grekov M.A. Two types of interface defects // J. Appl. Math. Mech. 2011. V. 75. № 4. P. 476–488. https://doi.org/ 10.1016/j.jappmathmech.2011.09.012
  26. Grekov M.A., Morozov N.F. Some modern methods in mechanics of cracks // Modern analysis and applications. 2009. V. 191. P. 127–142. https://doi.org/10.1007/978-3-7643-9921-4_8
  27. Koiter W. On the diffusion of load from a stiffener into a sheet // Q. J. Mech. Appl. Math. 1955. V. 8. № 2. P. 164–178. https://doi.org/10.1093/qjmam/8.2.164
  28. Popov G. Bending of a semi-infinite plate resting on a linearly deformable foundation // J. Appl. Math. Mech. 1961. 25 (2). P. 502–520. doi: 10.1016/0021-8928(61)90082-x
  29. Alblas J., Kuypers W., On the diffusion of load from a stiffener into an infinite wedge-shaped plate // Appl. Sci. Res. 1966. 15 (1). P. 429–439. doi: 10.1007/BF00411576
  30. Salganik R., Ustinov K., Deformation problem for an elastically fixed plate modeling a coating partially delaminated from the substrate (plane strain) // Mech. Solid. 2012. 47(4). P. 415–425. doi: 10.3103/s0025654412040061
  31. Ustinov K. On shear separation of a thin strip from the half-plane // Mech. Solid. 2014. 49(6). P. 713–724. doi: 10.3103/s0025654414060132
  32. Ustinov K. On delamination of a stipe along the boundary between two elastic layers part 1, problem formulation, the case of normal crack // PNRPU Mech. Bull. 2015 (4), 226–245. doi: 10.15593/perm.mech/2015.4.13
  33. Ustinov K., On delamination of a strip along the boundary between two elastic layers. part 2, case of shear crack // PNRPU Mech. Bull. 2016 (2), 131–142. doi: 10.15593/perm.mech/ 2016.1.09
  34. Massabò R., Ustinov K., Barbieri L., Berggreen, C. Fracture Mechanics Solutions for Interfacial Cracks between Compressible Thin Layers and Substrates // Coatings. 2019. 9(3). P. 152. doi: 10.3390/coatings9030152
  35. Ustinov K.B., Massabò R. On elastic clamping boundary conditions in plate models describing detaching bilayers // Int. J. Sol. Struct. 2022. 248. P. 111600. doi: 10.1016/j.ijsolstr.2022.111600
  36. Lekhnitsky Theory of elasticity of an anisotropic elastic body 1963.
  37. Noble B., Methods Based on the Wiener-Hopf Technique for the Solution of Partial Differential Equations. Physics Today. 12 (9). 1959. P. 50. doi: 10.1063/1.3060973
  38. Sih G.C., Paris P.C., Irwin G.R. On cracks in rectilinearly anisotropic bodies Int. J. Fract. Mech. 1965. 1(3). P. 189–203. doi: 10.1007/bf00186854
  39. Wang C., Shih C.F., Suo Z. Crack extension and kinking in laminates and bicrystals. Int. J. Sol. Struct. 1992. 29(3). P. 327–344. doi: 10.1016/0020-7683(92)90203-6

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Configuration and system of applied loads.

Жүктеу (102KB)
3. Fig. 2. Dependence of the function Y1 on  for  = /3; solid lines are = 1, dashed lines are  = 4, dotted lines are = 1/4.

Жүктеу (54KB)
4. Fig. 3. Dependence of the function Y1 on : (a) for  = 2, (b) for  = 5, (c) for  = 0.7; solid lines -  = 1, dashed lines -  = 4, dashed lines -  = 8, dotted lines -  = 1/4.

Жүктеу (160KB)
5. Fig. 4. Dependence of the function Y2 on  for  = /3; solid lines -  = 1, dashed lines -  = 4, dotted lines -  = 1/4.

Жүктеу (58KB)
6. Fig. 5. Dependence of Y2 function on : (a) for  = 2, (b) for  = 5, (c) for  = 0.7; solid lines -  = 1, dashed lines -  = 4, dashed-dotted lines -  = 8, dotted lines -  = 1/4.

Жүктеу (162KB)

© Russian Academy of Sciences, 2024