Hormonal status of stolons and formed tubers during the vegetation of potato plants (Solanum tuberosum L.)

Cover Page

Cite item

Full Text

Abstract

The content of four groups of phytohormones – auxins, cytokinins, abscisic acid – was studied by the method of solid-phase enzyme immunoassay and gibberellins by the method of biotesting in stolons and forming tubers during the vegetation period of Solanum tuberosum grown in soil culture under vegetation conditions. The prevalence of gibberellins was revealed during the period of stolon growth. At the beginning of tuber formation initiation, ABA increases, which can contribute to the cessation of stolon growth, but the content of IAA and zeatin remains high. Stolons of large tubers contained more GA3, IAA, but less ABA, had a greater number of vessels in the vascular bundle. The prevalence of auxins and a decrease in the ABA content in large tubers compared to small ones were established. An increase in the mass of large tubers in a bush, as well as the thickness of their phellem (cork), the diameter of the cells of the perimedullary zone and the size of the cells of the cortex, compared to small tubers, was shown against the background of a higher IAA/ABA ratio.

Full Text

Restricted Access

About the authors

T. I. Puzina

Oryol State University

Author for correspondence.
Email: tipuzina@gmail.com
Russian Federation, Komsomolskaya st., 95, Oryol, 302026

I. Yu. Makeeva

Oryol State University

Email: tipuzina@gmail.com
Russian Federation, Komsomolskaya st., 95, Oryol, 302026

I. G. Kirillova

Oryol State University

Email: tipuzina@gmail.com
Russian Federation, Komsomolskaya st., 95, Oryol, 302026

References

  1. Аксенова Н. П., Константинова Т. Н., Голяновская С. А., Сергеева Л. И., Романов Г. А. Гормональная регуляция клубнеобразования у картофеля // Физиология растений. 2012. Т. 59. № 4. С. 491–490.
  2. Борзенкова Р. А., Боровкова М. П. Динамика распределения фитогормонов по различным зонам клубней картофеля в связи с ростом и запасанием крахмала // Физиология растений. 2003. Т. 50. № 1. С. 129–134.
  3. Веселов С. Ю. Использование антител для количественного определения очистки и локализации регуляторов роста растений. Уфа: БГУ, 1998. 138 с.
  4. Гизатуллина А. Т., Сташевски З. Изучение влияния сахарозы, кинетина, бензоаминопурина и фотопериода на массу и количество микроклубней картофеля (Solanum tuberosum L.) сорта Невский в асептической культуре in vitro // Достижения науки и техники АПК. 2021. Т. 35. № 12. С. 44–49. https://doi.org/10.53859/02352451_2021_35_12_44.
  5. Дерфлинг К. Гормоны растений: Системный подход / Пер. с нем. Н. С. Гельман. М.: Мир, 1985. 303 с. (Derffling К. Das Hormonsуstem der Pflanzen. Stuttgart; New York, 1982).
  6. Мокроносов А. Т. Клубнеобразование и донорно-акцепторные связи картофеля // Регуляция роста и развития картофеля / Под ред. М. Х. Чайлахяна, А. Т. Мокроносова. М.: Наука, 1990. С. 6–12.
  7. Пузина Т. И., Кириллова И. Г., Якушкина Н. И. Динамика индолилуксусной кислоты в органах картофеля на разных этапах онтогенеза и ее роль в регуляции роста клубня // Изв. РАН. Сер. биол. 2000. № 2. С. 170‒177.
  8. Чайлахян М. Х. Фотопериодическая и гормональная регуляция клубнеобразования у растений. М.: Наука, 1984. 559 с.
  9. Aksenova N. P., Sergeeva L. I., Kolachevskaya O. O., Romanov G. A. Hormonal regulation of tuber formation in potato // Bulbous Plants. Biotechnology. 2014. CRC Press, New York, London. P. 3–36. https://doi.org/10.1201/b16136-3.
  10. Chen P., Yang R., Bartels D., Dong T., and Duan H. Roles of Abscisic Acid and Gibberellins in Stem/Root Tuber Development // International Journal of Molecular Sciences. 2022. V. 23. № 9. P. 4955. https://doi.org/10.3390/ijms23094955.
  11. Classens M. J., Vreugdenhil D. Is dormancy breaking of potato tubers the reverse of tuber initiation // Pot. Res. 2000. № 43. P. 347–369. https://doi.org/10.1007/BF02360540.
  12. Ewing E. E., Struik P. C. Tuber formation in potato: Induction, initiation and growth // Horticultural Reviews. 1992. V. 14. P. 89–198. https://doi.org/10.1002/9780470650523.ch3.
  13. Koda Y., Okazawa Y. Cytokinin Production by Tomato Root: Nutritional and Hormonal Factors Affecting the Amount of Cytokinin Released from the Roots // J. of the Faculty of Agriculture. 1983. V. 61. P. 261–271.
  14. Kolachevskaya O. O., Alekseeva V. V., Sergeeva L. I. et al. Expression of auxin synthesis gene tms1 under control of tuber‐specific promoter enhances potato tuberization in vitro // Journal of Integrative Plant Biology. 2015. V.57. №9. P. 734–744. https://doi.org/110.1111/jipb.12314.
  15. Kolachevskaya O. O., Lomin S. N., Arkhipov D. V., Romanov G. A. Auxins in potato: Molecular aspects and emerging roles in tuber formation and stress resistance // Plant Cell Rep. 2019. V. 38. P. 681–698. https://doi.org/10.1007/s00299-019-02395-0.
  16. Kumari S. Effect of Kinetin (6-FAP) and Cycocel (CCC) on Growth, Metabolism and Cellular Organelles in Pearl Millet (Pennisetum glaucum) Under Water Stress // International Journal of Current Microbiology and Applied Sciences. 2021. V. 6. P. 2711–2719. https://doi.org/10.20546/ijcmas.2017.608.325.
  17. Petrov A. F., Galeev R. R., Gavrilets N. V. et al. Influence of growth regulators on the yield and quality of potatoe // Bulletin of NSAU (Novosibirsk State Agrarian University). 2021. № 2. P. 62–72. https://doi.org/10.31677/2072-6724-2021-59-2-62-72.
  18. Romanov G. A., Aksenova N. P., Konstantinova T. N. et al. Effect of Indole3Acetic Acid and Kinetin on Tuberization Parameters of Different Cultivars and Transgenic Lines of Potato In Vitro // Plant Growth Regul. 2000. V. 32. P. 245–251.
  19. Roumeliotis E., Kloosterman B., Oortwijn M. et al. The effec ts of auxin and strigolactones on tuber initiation and stolon architecture in potato // J. Exp. Bot. 2012. PMID: 22689826.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in the ratio of phytohormones in stolons during their ontogenesis.

Download (139KB)
3. Fig. 2. Number of vessels in stolons of tubers of different sizes (flowering phase).

Download (136KB)
4. Fig. 3. Tuber weight and their anatomical parameters depending on fractional composition. 1 – cell length; 2 – cell width.

Download (453KB)

Copyright (c) 2025 Russian Academy of Sciences