Metabolic alterations in mice bearing hepatoma 22A: focus on ceruloplasmin

Cover Page

Cite item

Full Text

Abstract

Ceruloplasmin (Cp), plays a key role in metabolism of two vital trace elements – iron and copper, whose metabolic pathways are closely related to each other as well as to zinc uptake. Increased concentration of Cp usually follows tumor growth, but its role in tumor progression is not clear. The aim of the study was to compare the changes of Cp concentration in blood serum with iron and zinc content as well as with concentrations of proinflammatory cytokines and lipids in the dynamics of tumor growth. Additionally, Cp concentration was studied in mice supplemented with zinc sulphate in drinking water. The study was performed in C3HA mice, which were subcutaneously inoculated with hepatoma 22a cells. Serum Cp increased from 14th day after tumor inoculation simultaneously with the appearence of central necrosis in the tumor and elevation of serum triglycerides. The growth of blood IL-6 concentration began from 7th day and could possibly trigger the acute phase reaction expressed in increase in Cp synthesis and the development of hypoferremia, hypozincemia and hypertriglyceridemia. The content of non-heme iron in blood and liver decreased later than Cp up-regulation. This indicates that iron deficiency was not the cause of Cp increase on 14th day, but could support it at later stages of tumor growth. Zinc sulphate supplementation returned non-heme iron content and partly returned zinc concentration in the blood of mice on 21st day, but did not influence the concentration of Cp. It is discussed that the possible protumoral role of Cp is related not as much to iron metabolism as to its ability to transport copper to tissues. We hypothesize that serum Cp is an important pathogenetic factor that participates in supplementation of tumors with necessary lipid metabolites since Cp, together with IL-6, can possibly support lipolysis in adipose tissue, delivering copper ions there.

About the authors

E. A. Zelenskyi

Institute of Experimental Medicine

Email: ekissele@yandex.ru
Saint Petersburg, Russia;

K. V. Rutto

St. Petersburg State Technological Institute (Technical University)

Saint Petersburg, Russia

A. S. Trulioff

Institute of Experimental Medicine

Saint Petersburg, Russia

N. P. Gorbunov

Saint Petersburg Pasteur Institute

Saint Petersburg, Russia

A. V. Sokolov

Smorodintsev Research Institute of Influenza

Saint Petersburg, Russia

E. P. Kisseleva

Institute of Experimental Medicine

Saint Petersburg, Russia

References

  1. Zhang Y, Chen Z, Chen JG, Chen XF, Gu DH, Liu ZM, Gao YD, Zheng B (2021) Ceruloplasmin overexpression is associated with oncogenic pathways and poorer survival rates in clear-cell renal cell carcinoma. FEBS Open Bio 11(11): 2988–3004. https://doi.org/10.1002/2211-5463.13283
  2. Matsuoka R, Shiba-Ishii A, Nakano N, Togayachi A, Sakashita S, Sato Y, Minami Y, Noguchi M (2018) Heterotopic production of ceruloplasmin by lung adenocarcinoma is significantly correlated with prognosis. Lung Cancer 118: 97–104. https://doi.org/10.1016/j.lungcan.2018.01.012
  3. Bonaccorsi di Patti MC, Cutone A, Polticelli F, Rosa L, Lepanto MS, Valenti P, Musci G (2018) The ferroportin-ceruloplasmin system and the mammalian iron homeostasis machine: regulatory pathways and the role of lactoferrin. Biometals 31(3): 399–414. https://doi.org/10.1007/s10534-018-0087-5
  4. Вавилова ТП, Гусарова ЮН, Королева ОВ, Медведев АЕ (2005) Роль церулоплазмина при развитии неопластических процессов. Биомед химия 51(3): 263–275 [Vavilova TP, Goussarova YuN, Koroleva OV, Medvedev AE (2005) The role of ceruloplasmin in neoplastic processes. Biomed Khimiya 51(3): 263–275. (In Russ)].
  5. Campbell CH, Brown R, Linder MC (1981) Circulating ceruloplasmin is an important source of copper for normal and malignant animal cells. Biochim Biophys Acta 678(1): 27–38. https://doi.org/10.1016/0304-4165(81)90044-1
  6. Ranganathan PN, Lu Y, Jiang L, Kim C, Collins JF (2011) Serum ceruloplasmin protein expression and activity increases in iron-deficient rats and is further enhanced by higher dietary copper intake. Blood 118(11): 3146–3153. https://doi.org/10.1182/blood-2011-05-352112
  7. Bjørklund G, Aaseth J, Skalny AV, Suliburska J, Skalnaya MG, Nikonorov AA, Tinkov AA (2017) Interactions of iron with manganese, zinc, chromium, and selenium as related to prophylaxis and treatment of iron deficiency. J Trace Elem Med Biol 41: 41–53. https://doi.org/10.1016/j.jtemb.2017.02.005
  8. Malavolta M, Piacenza F, Basso A, Giacconi R, Costarelli L, Mocchegiani E (2015) Serum copper to zinc ratio: Relationship with aging and health status. Mech Ageing Dev 151: 93–100. https://doi.org/10.1016/j.mad.2015.01.004
  9. L´Abbe MR, Fischer PWF (1984) The Effects of Dietary Zinc on the Activity of Copper-Requiring Metalloenzymes in the Rat. J Nutr 114(5): 823–828. https://doi.org/10.1093/jn/114.5.823
  10. Broun ER, Greist A, Tricot G, Hoffman R (1990) Excessive zinc ingestion. A reversible cause of sideroblastic anemia and bone marrow depression. JAMA 264(11): 1441–1443. https://doi.org/10.1001/jama.264.11.1441
  11. Cox DH, Chu RC, Schlicker SA (1969) Zinc deficiency in the maternal rat during gestation, and zinc, iron, copper, and calcium content and enzyme activity in maternal and fetal tissues. J Nutr 98(4): 449–458. https://doi.org/10.1093/jn/98.4.449
  12. Samygina VR, Sokolov AV, Bourenkov G, Schneider TR, Anashkin VA, Kozlov SO, Kolmakov NN, Vasilyev VB (2017) Rat ceruloplasmin: a new labile copper binding site and zinc/copper mosaic. Metallomics 9(12): 1828–1838. https://doi.org/10.1039/c7mt00157f
  13. Sakajiri T, Nakatsuji M, Teraoka Y, Furuta K, Ikuta K, Shibusa K, Sugano E, Tomita H, Inui T, Yamamura T (2021) Zinc mediates the interaction between ceruloplasmin and apo-transferrin for the efficient transfer of Fe(III) ions. Metallomics 13(12): mfab065. https://doi.org/10.1093/mtomcs/mfab065
  14. Sintusek P, Kyrana E, Dhawan A (2019) Chapter 11–Diagnosis of Hepatic Wilson Disease, in: Wilson Disease Weiss RH, Schilsky M (eds) Acad Press. 125–138. https://doi.org/10.1016/B978-0-12-811077-5.00011-6
  15. Ganz T, Nemeth E (2024) Hypoferremia of inflammation: Innate host defense against infections. Blood Cells Mol Dis 104: 102777. https://doi.org/10.1016/j.bcmd.2023.102777
  16. Foster M, Samman S (2012) Zinc and regulation of inflammatory cytokines: implications for cardiometabolic disease. Nutrients 4(7): 676–694. https://doi.org/10.3390/nu4070676
  17. Haase H, Rink L (2014) Zinc signals and immune function. Biofactors 40(1): 27–40. https://doi.org/ 10.1002/biof.1114
  18. Das SK, Hoefler G (2013) The role of triglyceride lipases in cancer associated cachexia. Trends Mol Med 19 (5): 292–301. https://doi.org/10.1016/j.molmed.2013.02.006
  19. Nonogaki K, Fuller GM, Fuentes NL, Moser AH, Staprans I, Grunfeld C, Feingold KR (1995) Interleukin-6 stimulates hepatic triglyceride secretion in rats. Endocrinology 136(5): 2143–2149. https://doi.org/10.1210/endo.136.5.7720663
  20. Chen Y, Yu C-Y, Deng W-M (2019) The role of pro-inflammatory cytokines in lipid metabolism of metabolic diseases. Int Rev Immunol 38(6): 249–266. https://doi.org/10.1080/08830185.2019.1645138
  21. Raia S, Conti A, Zanardi A, Ferrini B, Scotti GM, Gilberti E, De Palma G, David S, Alessio M (2023) Ceruloplasmin-deficient mice show dysregulation of lipid metabolism in liver and adipose tissue reduced by a protein replacement. Int J Mol Sci 24: 1150. https://doi.org/10.3390/ijms24021150
  22. Kim CH, Park JY, Kim JY, Choi CS, Kim YI, Chung YE, Lee MS, Hong SK, Lee KU (2002) Elevated serum ceruloplasmin levels in subjects with metabolic syndrome: a population-based study. Metabolism 51(7): 838–842. https://doi.org/10.1053/meta.2002.33348
  23. Schmidt-Arras D, Rose-John S (2016) IL-6 pathway in the liver: From physiopathology to therapy. J Hepatol 64(6): 1403–1415. https://doi.org/10.1016/j.jhep.2016.02.004
  24. Kwee JK (2014) A paradoxical chemoresistance and tumor suppressive role of antioxidant in solid cancer cells: a strange case of Dr. Jekyll and Mr. Hyde. Biomed Res Int 2014: 209845. https://doi.org/10.1155/2014/209845
  25. Robinson TP, Hamidi T, Counts B, Guttridge DC, Ostrowski MC, Zimmers TA, Koniaris LG (2023) The impact of inflammation and acute phase activation in cancer cachexia. Front Immunol 14: 1207746. https://doi.org/10.3389/fimmu.2023.1207746
  26. Aksan A, Farrag K, Aksan S, Schroeder O, Stein J (2021) Flipside of the coin: iron deficiency and colorectal cancer. Front Immunol 12: 635899. https://doi.org/10.3389/fimmu.2021.635899
  27. Gelbard A (2022) Zinc in cancer therapy revisited. Isr Med Assoc J 24(4): 258–262.
  28. Cunzhi H, Jiexian J, Xianwen Z, Jingang G, Shumin Z, Lili D (2003) Serum and tissue levels of six trace elements and copper/zinc ratio in patients with cervical cancer and uterine myoma. Biol Trace Elem Res 94(2): 113–122. https://doi.org/10.1385/BTER:94:2:113
  29. Idriss ME, Modawe GA, Shrif NE (2015) Assessment of serum zinc and iron among Sudanese women with breast cancer in Khartoum State. Int J Appl Sci Res Rev 2(2): 074–078.
  30. Weibel ER, Kistler GS, Scherle WF (1966) Practical stereological methods for morphometric cytology. J Cell Biol 30(1): 23–38.
  31. Rebouche CJ, Wilcox CL, Widness JA (2004) Microanalysis of non-heme iron in animal tissues. J Biochem Biophys Methods 58(3): 239–251. https://doi.org/10.1016/j.jbbm.2003.11.003
  32. Varfolomeeva EY, Semenova EV, Sokolov AV, Aplin KD, Timofeeva KE, Vasilyev VB, Filatov MV (2016) Ceruloplasmin decreases respiratory burst reaction during pregnancy. Free Radic Res 50(8): 909–919. https://doi.org/10.1080/10715762.2016.1197395
  33. Sokolov AV, Kostevich VA, Romanico DN, Zakharova ET, Vasilyev VB (2012) Two-stage method for purification of ceruloplasmin based on its interaction with neomycin. Biochemistry (Moscow) 77(6): 631–638. https://doi.org/10.1134/S0006297912060107
  34. Kisseleva EP, Krylov AV, Stepanova OI, Lioudyno VI (2011) Transplantable subcutaneous hepatoma 22a affects functional activity of resident tissue macrophages in periphery. Int J Cell Biol 2011: 793034. https://doi.org/10.1155/2011/793034
  35. Mohamed AH, Ahmed AT, Al Abdulmonem W, Bokov DO, Shafie A, Al-Hetty HRAK, Hsu CY, Alissa M, Nazir S, Jamali MC, Mudhafar M (2024) Interleukin-6 serves as a critical factor in various cancer progression and therapy. Med Oncol 41(7): 182. https://doi.org/10.1007/s12032-024-02422-5
  36. Metzger S, Hassin T, Barash V, Pappo O, Chajek-Shaul T (2001) Reduced body fat and increased hepatic lipid synthesis in mice bearing interleukin-6-secreting tumor. Am J Physiol Endocrinol Metab 281(5): E957–E965. https://doi.org/10.1152/ajpendo.2001.281.5.E957
  37. Gulbahce-Mutlu E, Baltaci SB, Menevse E, Mogulkoc R, Baltaci AK (2021) The effect of zinc and melatonin administration on lipid peroxidation, IL-6 Levels, and element metabolism in DMBAinduced breast cancer in rats. Biol Trace Elem Res 199(3): 1044–1051. https://doi.org/10.1007/s12011–020–02238–0
  38. Lee D Jr, Matrone G (1969) Iron and copper effects on serum ceruloplasmin activity of rats with zinc-induced copper deficiency. Proc Soc Exp Biol Med 130(4): 1190–1194. https://doi.org/10.3181/00379727-130-33751
  39. Зеленский ЕА, Рутто КВ, Соколов АВ, Киселева ЕП (2021) Прием цинка тормозит развитие инволюции тимуса при опухолевом росте у мышей. Вопр онкол 67(3): 436–441. [Zelenskiy EA, Rutto KV, Sokolov AV, Kisseleva EP (2021) Zinc supplementation prevents the development of thymic involution induced by tumor growth in mice. Vopr onkol 67(3): 436–441. (In Russ)]. https://doi.org/10.37469/0507–3758–2021–67–3–436–441
  40. Mocchegiani E, Santarelli L, Muzzioli M, Fabris N (1995) Reversibility of the thymus involution and of age-related peripheral immune dysfunction by zinc supplementation in old mice. Int J Immunopharmacol 17(9): 703–718. https://doi.org/10.1016/0192–0561(95)00059-b
  41. Sattar N, Scott HR, McMillan DC, Talwar D, O'Reilly DS, Fell GS (1997) Acute-phase reactants and plasma trace element concentrations in non-small cell lung cancer patients and controls. Nutr Cancer 28(3): 308–312. https://doi.org/10.1080/01635589709514592
  42. Lukanović D, Polajžer S, Matjašič M, Kobal B, Černe K (2024) Analysis of ATP7A expression and ceruloplasmin levels as biomarkers in patients undergoing neoadjuvant chemotherapy for advanced high-grade serous ovarian carcinoma. Int J Mol Sci 25(18): 10195. https://doi.org/10.3390/ijms251810195
  43. Onizuka K, Migita S, Yamada H, Matsumoto I (1999) Serum protein fractions in patients with laryngeal cancer undergoing radiation therapy. Possibility as a prognostic factor. Fukuoka Igaku Zasshi (Japanese) 90(2): 46–58.
  44. Tsai YM, Wu KL, Chang YY, Chang WA, Huang YC, Jian SF, Tsai PH, Lin YS, Chong IW, Hung JY, Hsu YL (2020) Loss of miR-145-5p causes ceruloplasmin interference with PHD-iron axis and HIF-2α stabilization in lung adenocarcinoma-mediated angiogenesis. Int J Mol Sci 21(14): 5081. https://doi.org/10.3390/ijms21145081
  45. Zelenskyi EA, Rutto KV, Trulioff AS, Magazenkova DN, Sokolov AV, Kisseleva EP (2024) Impaired tissue content of iron and zinc in mice with growing hepatoma 22A and its correction with zinc sulfate supplementation. Russ Physiol J 110(7): 1128–1146 (In Russ). https://doi.org/10.31857/S0869813924070057
  46. Younes RN, Vydelingum NA, Noguchi Y, Brennan MF (1990) Lipid kinetic alterations in tumor-bearing rats: Reversal by tumor excision. J Surg Res 48(4): 324–328. https://doi.org/10.1016/0022-4804(90)90067-C
  47. Deng T, Lyon CJ, Bergin S, Caligiuri MA, Hsueh WA (2016) Obesity, inflammation, and cancer. Annu Rev Pathol 11: 421–449. https://doi.org/10.1146/annurev-pathol-012615-044359
  48. Johnson DE, O'Keefe RA, Grandis JR (2018) Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol 15(4): 234–248. https://doi.org/10.1038/nrclinonc.2018.8
  49. Hoang BX, Han B, Shaw DG, Nimni M (2016) Zinc as a possible preventive and therapeutic agent in pancreatic, prostate, and breast cancer. Eur J Cancer Prevent 25(5): 457–461. https://doi.org/10.1097/CEJ.0000000000000194
  50. Zohora F, Bidad K, Pourpak Z, Moin M (2018) Biological and immunological aspects of iron deficiency anemia in cancer development: a narrative review. Nutr Cancer 70(4): 546–556. https://doi.org/10.1080/01635581.2018.1460685
  51. Khine L, Benmoussa J, Thorp JRA, Chandrasekaran N, Forlenza T, Bloomfield D (2016) Hypertriglyceridemia: An Open Door for Cancer Treatment? J Endocrinol Metab 6(2): 33–34. https://doi.org/10.14740/jem342w
  52. Lofterød T, Mortensen ES, Nalwoga H, Wilsgaard T, Frydenberg H, Risberg T, Eggen AE, McTiernan A, Aziz S, Wist EA, Stensvold A, Reitan JB, Akslen LA, Thune I (2018) Impact of pre-diagnostic triglycerides and HDL-cholesterol on breast cancer recurrence and survival by breast cancer subtypes. BMC Cancer 18(1): 654. https://doi.org/10.1186/s12885-018-4568-2
  53. Chen XQ, Wu PW, Liu DH, Yan SJ, Shen XM, Yang LY (2020) Prognostic significance of high triglyceride and apolipoprotein B levels in patients with stage III and high-risk stage II colorectal cancer undergoing curative surgery. Oncol Lett 20(1): 705–714. https://doi.org/10.3892/ol.2020.11617
  54. Haberl EM, Pohl R, Rein-Fischboeck L, Höring M, Krautbauer S, Liebisch G, Buechler C (2021) Accumulation of cholesterol, triglycerides and ceramides in hepatocellular carcinomas of diethylnitrosamine injected mice. Lipids Health Dis 20(1): 135. https://doi.org/10.1186/s12944-021-01567-w
  55. Saavedra-García P, Nichols K, Mahmud Z, Fan LY, Lam EW (2018) Unravelling the role of fatty acid metabolism in cancer through the FOXO3-FOXM1 axis. Mol Cell Endocrinol 462(Pt B): 82–92. https://doi.org/10.1016/j.mce.2017.01.012
  56. Fu Y, Yang J, Chen J, Li Y (2024) The role and molecular mechanisms of copper in regulating animal lipid metabolism. J Anim Feed Sci 33(4): 401–415. https://doi.org/10.22358/jafs/188788/2024
  57. Pousset D, Piller V, Bureaud N, Piller F (2001) High levels of ceruloplasmin in the serum of transgenic mice developing hepatocellular carcinoma. Eur J Biochem 268(5): 1491–1499. https://doi.org/10.1046/j.1432-1327.2001.02015.x
  58. Youn P, Kim S, Ahn JH, Kim Y, Park JD, Ryu DY (2009) Regulation of iron metabolism-related genes in diethylnitrosamine-induced mouse liver tumors. Toxicol Lett 184(3): 151–158. https://doi.org/10.1016/j.toxlet.2008.11.002
  59. Linder MC (2016) Ceruloplasmin and other copper binding components of blood plasma and their functions: an update. Metallomics 8(9): 887–905. https://doi.org/10.1039/c6mt00103c
  60. Tang X, Yan Z, Miao Y, Ha W, Li Z, Yang L, Mi D (2023) Copper in cancer: from limiting nutrient to therapeutic target. Front Oncol 13: 1209156. https://doi.org/10.3389/fonc.2023.1209156
  61. Lener MR, Wiechowska-Kozłowska A, Scott RJ, Muszynska M, Kladny J, Waloszczyk P, Rutkowska A, Sukiennicki G, Gromowski T, Jaworska-Bieniek K, van de Wetering T, Kaczmarek K, Jakubowska A, Lubinski J (2015) Serum concentrations of Cu, Se, Fe and Zn in patients diagnosed with pancreatic сancer. Heredit Cancer Clin Pract 13(Suppl 1): A14.
  62. Fang AP, Chen PY, Wang XY, Liu ZY, Zhang DM, Luo Y, Liao GC, Long JA, Zhong RH, Zhou ZG, Xu YJ, Xu XJ, Ling WH, Chen MS, Zhang YJ, Zhu HL (2019) Serum copper and zinc levels at diagnosis and hepatocellular carcinoma survival in the Guangdong Liver Cancer Cohort. Int J Cancer 144(11): 2823–2832. https://doi.org/10.1002/ijc.31991
  63. Brewer GJ, Merajver SD (2002) Cancer therapy with tetrathiomolybdate: antiangiogenesis by lowering body copper – a review. Integr Cancer Ther 1(4): 327–337. https://doi.org/10.1177/1534735402238185
  64. Magazenkova DN, Skomorokhova EA, Farroukh MA, Zharkova MS, Jassem ZM, Rekina VE, Shamova OV, Puchkova LV, Ilyechova EY (2023) Influence of silver nanoparticles on the growth of ascitic and solid Ehrlich adenocarcinoma: focus on copper metabolism. Pharmaceutics 15: 1099. https://doi.org/10.3390/pharmaceutics15041099
  65. Liu Z, Wang M, Zhang C, Zhou S, Ji G (2022) Molecular functions of ceruloplasmin in metabolic disease pathology. Diabetes Metab Syndr Obes 15: 695–711. https://doi.org/10.2147/DMSO.S346648
  66. Avan A, Członkowska A, Gaskin S, Granzotto A, Sensi SL, Hoogenraad TU (2022) The role of zinc in the treatment of Wilson’s disease. Int J Mol Sci 23: 9316. https://doi.org/10.3390/ijms23169316
  67. Nardinocchi L, Pantisano V, Puca R, Porru M, Aiello A, Grasselli A, Leonetti C, Safran M, Rechavi G, Givol D, Farsetti A, D'Orazi G (2010) Zinc downregulates HIF-1α and inhibits its activity in tumor cells in vitro and in vivo. PLoS One 5(12): e15048. https://doi.org/10.1371/journal.pone.0015048
  68. Kostevich VA, Sokolov AV, Kozlov SO, Vlasenko AY, Kolmakov NN, Zakharova ET, Vasilyev VB (2016) Functional link between ferroxidase activity of ceruloplasmin and protective effect of apo-lactoferrin: studying rats kept on a silver chloride diet. Biometals 29(4): 691–704. https://doi.org/10.1007/s10534-016-9944-2
  69. Dai L, Cui X, Zhang X, Cheng L, Liu Y, Yang Y, Fan P, Wang Q, Lin Y, Zhang J, Li C, Mao Y, Wang Q, Su X, Zhang S, Peng Y, Yang H, Hu X, Yang J, Huang M, Xiang R, Yu D, Zhou Z, Wei Y, Deng H (2016) SARI inhibits angiogenesis and tumour growth of human colon cancer through directly targeting ceruloplasmin. Nat Commun 7: 11996. https://doi.org/10.1038/ncomms11996. Retraction in: Nat Commun (2023) 14(1): 4377. https://doi.org/ 10.1038/s41467-023-40067-6

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences