Effect of four-week semaglutide therapy and its combination with intranasal insulin on thyroid and gonadal status in male rats with type 2 diabetes

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Currently, semaglutide, glucagon-like peptide-1 (GLP-1) receptor agonist, is widely used to treat type 2 diabetes mellitus (T2DM) and obesity, but its effect on the endocrine system functions disrupted in the diseases remains poorly understood. There are no data on the possible enhancement of the effect of semaglutide in the presence of intranasal administered insulin (IAI). The aim of the work was to study the effect of a four-week treatment of adult male rats with T2DM with semaglutide (50 μg/kg/day, subcutaneously) and its combination with IAI (2 IU/rat/day) on the hormonal parameters of the thyroid and gonadal systems. T2DM was induced by a high-fat diet and a low-dose streptozotocin. Along with glucose homeostasis parameters and insulin levels, the levels of thyroid hormones (fT4, tT4, fT3, and tT3), thyroid-stimulating hormone (TSH), testosterone and luteinizing hormone (LH) were assessed in the blood of animals. In rats with T2DM, semaglutide was shown to reduce body weight and fat mass, improve glucose tolerance and insulin sensitivity, and restore triiodothyronine levels and peripheral thyroid hormone conversion. Combined use with IAI enhanced the stimulating effects of semaglutide on the decreased levels of thyroid hormones in T2DM and normalized the increased level of TSH in T2DM and the sensitivity of the thyroid gland to TSH, assessed by the integral thyroid index. Both monotherapy with semaglutide and its combination with IAI partially restored testosterone levels decreased in T2DM, preventing androgen deficiency. Thus, semaglutide and its combination with IAI can be used to correct endocrine disorders in T2DM, which is important for clinical endocrinology and reproductive medicine.

Авторлар туралы

K. Derkach

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: derkatch_k@list.ru
St. Petersburg, Russia

I. Zorina

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

St. Petersburg, Russia

I. Fedorchuk

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

St. Petersburg, Russia

A. Shpakov

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences; Faculty of Medicine, St. Petersburg State University

St. Petersburg, Russia; St. Petersburg, Russia

Әдебиет тізімі

  1. Nauck MA, Müller TD (2023) Incretin hormones and type 2 diabetes. Diabetologia 66(10): 1780–1795. https://doi.org/10.1007/s00125-023-05956-x
  2. Wang T, Ding J, Cheng X, Yang Q, Hu P (2024) Glucagon-like peptide-1 receptor agonists: new strategies and therapeutic targets to treat atherosclerotic cardiovascular disease. Front Pharmacol 15: 1396656. https://doi.org/10.3389/fphar.2024.1396656
  3. Mahapatra MK, Karuppasamy M, Sahoo BM (2022) Semaglutide, a glucagon like peptide-1 receptor agonist with cardiovascular benefits for management of type 2 diabetes. Rev Endocr Metab Disord 23(3): 521–539. https://doi.org/10.1007/s11154-021-09699-1
  4. Blundell J, Finlayson G, Axelsen M, Flint A, Gibbons C, Kvist T, Hjerpsted JB (2017) Effects of once-weekly semaglutide on appetite, energy intake, control of eating, food preference and body weight in subjects with obesity. Diabetes Obes Metab 19(9): 1242–1251. https://doi.org/10.1111/dom.12932
  5. Gibbons C, Blundell J, Tetens Hoff S, Dahl K, Bauer R, Baekdal T (2021) Effects of oral semaglutide on energy intake, food preference, appetite, control of eating and body weight in subjects with type 2 diabetes. Diabetes Obes Metab 23(2): 581–588. https://doi.org/10.1111/dom.14255
  6. McLean BA, Wong CK, Campbell JE, Hodson DJ, Trapp S, Drucker DJ (2021) Revisiting the Complexity of GLP-1 Action from Sites of Synthesis to Receptor Activation. Endocr Rev 42(2): 101–132. https://doi.org/10.1210/endrev/bnaa032
  7. Fathy MA, Alsemeh AE, Habib MA, Abdel-Nour HM, Hendawy DM, Eltaweel AM, Abdelkhalek A, Ahmed MM, Desouky MK, Hua J, Fericean LM, Banatean-Dunea I, Arisha AH, Khamis T (2023) Liraglutide ameliorates diabetic-induced testicular dysfunction in male rats: role of GLP-1/Kiss1/GnRH and TGF-β/Smad signaling pathways. Front Pharmacol 14: 1224985. https://doi.org/10.3389/fphar.2023.1224985
  8. Capuccio S, Scilletta S, La Rocca F, Miano N, Di Marco M, Bosco G, Di Giacomo Barbagallo F, Scicali R, Piro S, Di Pino A (2024) Implications of GLP-1 Receptor Agonist on Thyroid Function: A Literature Review of Its Effects on Thyroid Volume, Risk of Cancer, Functionality and TSH Levels. Biomolecules 14(6): 687. https://doi.org/10.3390/biom14060687
  9. Ruska Y, Peterfi Z, Szilvásy-Szabó A, Kővári D, Hrabovszky E, Dorogházi B, Gereben B, Tóth B, Matziari M, Wittmann G, Fekete C (2024) GLP-1 Receptor Signaling Has Different Effects on the Perikarya and Axons of the Hypophysiotropic Thyrotropin-Releasing Hormone Synthesizing Neurons in Male Mice. Thyroid 34(2): 252–260. https://doi.org/10.1089/thy.2023.0284
  10. Wilcox L, Van Dril E (2024) Suppressed thyroid stimulating hormone levels after initiation of a subcutaneous glucagon-like peptide-1 receptor agonist in a post-thyroidectomy patient managed with levothyroxine case report. J Am Pharm Assoc (2003) 64(6): 102185. https://doi.org/10.1016/j.japh.2024.102185
  11. Han C, He X, Xia X, Li Y, Shi X, Shan Z, Teng W (2015) Subclinical Hypothyroidism and Type 2 Diabetes: A Systematic Review and Meta-Analysis. PLoS One 10(8): e0135233. https://doi.org/10.1371/journal.pone.0135233
  12. Hadgu R, Worede A, Ambachew S (2024) Prevalence of thyroid dysfunction and associated factors among adult type 2 diabetes mellitus patients, 2000–2022: a systematic review and meta-analysis. Syst Rev 13(1): 119. https://doi.org/10.1186/s13643-024-02527-y
  13. Gibb FW, Strachan MW (2014) Androgen deficiency and type 2 diabetes mellitus. Clin Biochem 47(10-11): 940–949. https://doi.org/10.1016/j.clinbiochem.2014.04.004
  14. Khalil SHA, Dandona P, Osman NA, Assaad RS, Zaitoon BTA, Almas AA, Amin NG (2024) Diabetes surpasses obesity as a risk factor for low serum testosterone level. Diabetol Metab Syndr 16(1): 143. https://doi.org/10.1186/s13098-024-01373-1
  15. Chen B, Tao L, Tian M, Ji Z (2025) Efficacy and safety of combination of semaglutide and basal insulin in patients with of type 2 diabetes mellitus: A systematic review and meta-analysis. Clin Nutr ESPEN 66: 564–572. https://doi.org/10.1016/j.clnesp.2025.01.056
  16. Li J, Li K, Liu Z, Yu H, Zhang J (2024) Efficacy and safety of semaglutide combined with metformin in treating T2DM with overweight or obesity: a systematic review and meta-analysis. Am J Transl Res 16(8): 3545–3556. https://doi.org/10.62347/RYLN5360
  17. Scheen AJ (2024) GLP-1 Receptor Agonists and SGLT2 Inhibitors in Type 2 Diabetes: Pleiotropic Cardiometabolic Effects and Add-on Value of a Combined Therapy. Drugs 84(11): 1347–1364. https://doi.org/10.1007/s40265-024-02090-9
  18. Shpakov AO, Zorina II, Derkach KV (2023) Hot Spots for the Use of Intranasal Insulin: Cerebral Ischemia, Brain Injury, Diabetes Mellitus, Endocrine Disorders and Postoperative Delirium. Int J Mol Sci 24(4): 3278. https://doi.org/10.3390/ijms24043278
  19. Derkach KV, Pechalnova AS, Sorokoumov VN, Zorina II, Morina IY, Chernenko EE, Didenko EA, Romanova IV, Shpakov AO (2025) Effect of a Low-Molecular-Weight Allosteric Agonist of the Thyroid-Stimulating Hormone Receptor on Basal and Thyroliberin-Stimulated Activity of Thyroid System in Diabetic Rats. Int J Mol Sci 26(2): 703. https://doi.org/10.3390/ijms26020703
  20. Gabery S, Salinas CG, Paulsen SJ, Ahnfelt-Rønne J, Alanentalo T, Baquero AF, Buckley ST, Farkas E, Fekete C, Frederiksen KS, Helms HCC, Jeppesen JF, John LM, Pyke C, Nøhr J, Lu TT, Polex-Wolf J, Prevot V, Raun K, Simonsen L, Sun G, Szilvásy-Szabó A, Willenbrock H, Secher A, Knudsen LB, Hogendorf WFJ (2020) Semaglutide lowers body weight in rodents via distributed neural pathways. JCI Insight 5(6): e133429. https://doi.org/10.1172/jci.insight.133429
  21. Kloock S, Haerting N, Herzog G, Oertel M, Geiger N, Geier A, Sequeira V, Nickel A, Kohlhaas M, Fassnacht M, Dischinger U (2024) Effects of NPY-2 Receptor Antagonists, Semaglutide, PYY3-36, and Empagliflozin on Early MASLD in Diet-Induced Obese Rats. Nutrients 16(6): 904. https://doi.org/10.3390/nu16060904
  22. Larsen AT, Mohamed KE, Melander SA, Karsdal MA, Henriksen K (2024) The enduring metabolic improvement of combining dual amylin and calcitonin receptor agonist and semaglutide treatments in a rat model of obesity and diabetes. Am J Physiol Endocrinol Metab 327(2): E145–E154. https://doi.org/10.1152/ajpendo.00092.2024
  23. Farr OM, Sofopoulos M, Tsoukas MA, Dincer F, Thakkar B, Sahin-Efe A, Filippaios A, Bowers J, Srnka A, Gavrieli A, Ko BJ, Liakou C, Kanyuch N, Tseleni-Balafouta S, Mantzoros CS (2016) GLP-1 receptors exist in the parietal cortex, hypothalamus and medulla of human brains and the GLP-1 analogue liraglutide alters brain activity related to highly desirable food cues in individuals with diabetes: a crossover, randomised, placebo-controlled trial. Diabetologia 59(5): 954–965. https://doi.org/10.1007/s00125-016-3874-y
  24. Gier B, Butler PC, Lai CK, Kirakossian D, DeNicola MM, Yeh MW (2012) Glucagon like Peptide-1 Receptor Expression in the Human Thyroid Gland. J Clin Endocrinol Metab 97: 121–131. https://doi.org/10.1210/jc.2011–2407
  25. Rosol TJ (2013) On-target effects of GLP-1 receptor agonists on thyroid C-cells in rats and mice. Toxicol Pathol 41(2): 303–309. https://doi.org/10.1177/0192623312472402
  26. Beak SA, Small CJ, Ilovaiskaia I, Hurley JD, Ghatei MA, Bloom SR, Smith DM (1996) Glucagon-like peptide-1 (GLP-1) releases thyrotropin (TSH): characterization of binding sites for GLP-1 on alpha-TSH cells. Endocrinology 137(10): 4130–4138. https://doi.org/10.1210/endo.137.10.8828468
  27. Sencar ME, Sakiz D, Calapkulu M, Hepsen S, Kizilgul M, Ozturk IU, Ucan B, Bayram M, Cagir BB, Akin S, Ozbek M, Cakal E (2019) The Effect of Exenatide on Thyroid-Stimulating Hormone and Thyroid Volume. Eur Thyroid J 8(6): 307–311. https://doi.org/10.1159/000501895
  28. Tee SA, Tsatlidis V, Razvi S (2023) The GLP-1 receptor agonist exenatide reduces serum TSH by its effect on body weight in people with type 2 diabetes. Clin Endocrinol (Oxf) 99(4): 401–408. https://doi.org/10.1111/cen.14901
  29. Ye J, Xu J, Wen W, Huang B (2022) Effect of Liraglutide on Serum TSH Levels in Patients with NAFLD and its Underlying Mechanisms. Int J Clin Pract 2022: 1786559. https://doi.org/10.1155/2022/1786559
  30. El Medany AMH, Hammadi SHM, Khalifa HM, Ghazala RA, Zakaria Mohammed HS (2022) The vascular impact of dapagliflozin, liraglutide, and atorvastatin alone or in combinations in type 2 diabetic rat model. Fundam Clin Pharmacol 36(4): 731–741. https://doi.org/10.1111/fcp.12765
  31. Feier CVI, Vonica RC, Faur AM, Streinu DR, Muntean C (2024) Assessment of Thyroid Carcinogenic Risk and Safety Profile of GLP1-RA Semaglutide (Ozempic) Therapy for Diabetes Mellitus and Obesity: A Systematic Literature Review. Int J Mol Sci 25(8): 4346. https://doi.org/10.3390/ijms25084346
  32. Outeiriño-Iglesias V, Romaní-Pérez M, González-Matías LC, Vigo E, Mallo F (2015) GLP-1 Increases Preovulatory LH Source and the Number of Mature Follicles, As Well As Synchronizing the Onset of Puberty in Female Rats. Endocrinology 156(11): 4226–4237. https://doi.org/10.1210/en.2014-1978
  33. Cannarella R, Calogero AE, Condorelli RA, Greco EA, Aversa A, La Vignera S (2021) Is there a role for glucagon-like peptide-1 receptor agonists in the treatment of male infertility? Andrology 9(5): 1499–1503. https://doi.org/10.1111/andr.13015
  34. Oride A, Kanasaki H, Mijiddorj T, Sukhbaatar U, Hara T, Tumurbaatar T, Kyo S (2017) GLP-1 increases Kiss-1 mRNA expression in kisspeptin-expressing neuronal cells. Biol Reprod 97(2): 240–248. https://doi.org/10.1093/biolre/iox087
  35. Caltabiano R, Condorelli D, Panza S, Boitani C, Musso N, Ježek D, Memeo L, Colarossi L, Rago V, Mularoni V, Spadola S, Castiglione R, Santoro M, Aquila S, D'Agata R (2020) Glucagon-like peptide-1 receptor is expressed in human and rodent testis. Andrology 8(6): 1935–1945. https://doi.org/10.1111/andr.12871
  36. Arbabi L, Li Q, Henry BA, Clarke IJ (2021) Glucagon-like peptide-1 control of GnRH secretion in female sheep. J Endocrinol 248(3): 325–335. https://doi.org/10.1530/JOE-20-0335
  37. Simpson EM, Clarke IJ, Scott CJ, Stephen CP, Rao A, Gunn AJ (2023) The GLP-1 agonist, exendin-4, stimulates LH secretion in female sheep. J Endocrinol 259(1): e230105. https://doi.org/10.1530/JOE-23-0105
  38. Giagulli VA, Carbone MD, Ramunni MI, Licchelli B, De Pergola G, Sabbà C, Guastamacchia E, Triggiani V (2015) Adding liraglutide to lifestyle changes, metformin and testosterone therapy boosts erectile function in diabetic obese men with overt hypogonadism. Andrology 3(6): 1094–1103. https://doi.org/10.1111/andr.12099
  39. Jensterle M, Podbregar A, Goricar K, Gregoric N, Janez A (2019) Effects of liraglutide on obesity-associated functional hypogonadism in men. Endocr Connect 8(3): 195–202. https://doi.org/10.1530/EC-18-0514
  40. Jeibmann A, Zahedi S, Simoni M, Nieschlag E, Byrne MM (2005) Glucagon-like peptide-1 reduces the pulsatile component of testosterone secretion in healthy males. Eur J Clin Invest 35(9): 565–572. https://doi.org/10.1111/j.1365-2362.2005.01542.x
  41. Izzi-Engbeaya C, Jones S, Crustna Y, Machenahalli PC, Papadopoulou D, Modi M, Panayi C, Starikova J, Eng PC, Phylactou M, Mills E, Yang L, Ratnasabapathy R, Sykes M, Plumptre I, Coumbe B, Wing VC, Pacuszka E, Bech P, Minnion J, Tharakan G, Tan T, Veldhuis J, Abbara A, Comninos AN, Dhillo WS (2020) Effects of Glucagon-like Peptide-1 on the Reproductive Axis in Healthy Men. J Clin Endocrinol Metab 105(4): 1119–1125. https://doi.org/10.1210/clinem/dgaa072
  42. Shpakov AO, Derkach KV, Berstein LM (2015) Brain signaling systems in the Type 2 diabetes and metabolic syndrome: promising target to treat and prevent these diseases. Future Sci OA 1(3): FSO25. https://doi.org/10.4155/fso.15.23
  43. Dong Y, Carty J, Goldstein N, He Z, Hwang E, Chau D, Wallace B, Kabahizi A, Lieu L, Peng Y, Gao Y, Hu L, Betley JN, Williams KW (2021) Time and metabolic state-dependent effects of GLP-1R agonists on NPY/AgRP and POMC neuronal activity in vivo. Mol Metab 54: 101352. https://doi.org/10.1016/j.molmet.2021.101352
  44. Derkach KV, Bogush IV, Berstein LM, Shpakov AO (2015) The Influence of Intranasal Insulin on Hypothalamic-Pituitary-Thyroid Axis in Normal and Diabetic Rats. Horm Metab Res 47(12): 916–924. https://doi.org/10.1055/s-0035-1547236
  45. Angela De Stefano M, Porcelli T, Schlumberger M, Salvatore D (2023) Deiodinases in thyroid tumorigenesis. Endocr Relat Cancer 30(5): e230015. https://doi.org/10.1530/ERC-23-0015
  46. Ghanim H, Batra M, Green K, Abuaysheh S, Hejna J, Makdissi A, Borowski R, Kuhadiya ND, Chaudhuri A, Dandona P (2020) Liraglutide treatment in overweight and obese patients with type 1 diabetes: A 26-week randomized controlled trial; mechanisms of weight loss. Diabetes Obes Metab 22(10): 1742–1752. https://doi.org/10.1111/dom.14090
  47. Oliveira FCB, Bauer EJ, Ribeiro CM, Pereira SA, Beserra BTS, Wajner SM, Maia AL, Neves FAR, Coelho MS, Amato AA (2022) Liraglutide Activates Type 2 Deiodinase and Enhances β3-Adrenergic-Induced Thermogenesis in Mouse Adipose Tissue. Front Endocrinol (Lausanne) 12: 803363. https://doi.org/10.3389/fendo.2021.803363
  48. Stafeev I, Sorkina E, Koksharova E, Tumanyan T, Sklyanik I, Menshikov M, Mayorov A, Parfyonova Y, Shestakova M (2021) The Effects of Glucagon-Like Peptide Type 1 (GLP-1) and its Analogues in Adipose Tissue: Is there a way to Thermogenesis? Curr Mol Med 21(7): 527–538. https://doi.org/10.2174/1566524020666201201095029

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2025