Studies on mechanisms of development and electrostimulation approaches to migraine therapy

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Acesso é pago ou somente para assinantes

Resumo

Migraine with its high prevalence, complex pathogenesis, including changes in the nervous, immune, cardiovascular systems, and limited effectiveness of drug treatment, is one of the urgent problems of modern medicine. The search for new pharmaceutical targets and development of pharmacological agents is required. Since the end of the 20th century, studies have shown the possible involvement of the brain's dopaminergic system in the pathogenesis of migraine. Migraine pain is often combined with premonitory yawning and drowsiness, accompanied by nausea and vomiting, postdromal drowsiness, euphoria and polyuria, which may be related to dopaminergic activity. The study of dopaminergic mechanisms of migraine development may form the basis of future drug lines for the therapy of cephalgia. One of the problems in modern clinical practice is the selection of therapy for the treatment and prevention of migraine. Excessive uncontrolled use of analgesics for pain attacks increases the risk of transition of episodic migraine into a chronic form. In this regard, recently great importance has been given to the study of non-drug treatment methods, among which neuromodulation occupies a special place. Electrical stimulation of the cervical spinal cord has shown high efficacy in chronic migraine in the clinic, but the mechanisms of migraine neuromodulation have not been determined. This review describes the current understanding of the role of dopamine in the development of migraine, considers a new experimental model for studying the mechanisms of its development – animals with dopaminergic dysregulation, with dopamine transporter knockout (DAT-KO), describes possible mechanisms, prerequisites and experience of using spinal electrical stimulation for the treatment of migraine.

Sobre autores

A. Kochneva

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology

Federal Territory of Sirius, Russia

E. Gerasimova

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology

Federal Territory of Sirius, Russia

D. Enikeev

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology; Pavlov Institute of Physiology of the Russian Academy of Sciences

Federal Territory of Sirius, Russia; St. Petersburg, Russia

S. Konovalova

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology

Federal Territory of Sirius, Russia

Y. Sysoev

Pavlov Institute of Physiology of the Russian Academy of Sciences; Institute of Translational Biomedicine, Saint Petersburg State University

St. Petersburg, Russia; St. Petersburg, Russia

A. Kalueff

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology; Institute of Translational Biomedicine, Saint Petersburg State University

Federal Territory of Sirius, Russia; St. Petersburg, Russia

P. Musienko

Department of Neurobiology, Scientific Center of Genetics and Life Sciences, Sirius University of Science and Technology; Life Improvement by Future Technologies Center “LIFT”; FSBI "Federal Center for Brain and Neurotechnologies"

Email: musienko.pe@talantiuspeh.ru
Federal Territory of Sirius, Russia; Moskow, Russia; Moskow, Russia

Bibliografia

  1. Headache Classification Committee of the International Headache Society (2013) The International Classification of Headache Disorders, 3rd edition (beta version). Cephalalgia 33: 629–808. https://doi.org/10.1177/0333102413485658
  2. Steiner TJ, Stovner LJ, Vos T (2016) GBD 2015: Migraine is the third cause of disability in under 50s. J Headache Pain 17: 104. https://doi.org/10.1186/s10194-016-0699-5
  3. Andreou AP, Edvinsson L (2019) Mechanisms of migraine as a chronic evolutive condition. J Headache Pain 20: 117. https://doi.org/10.1186/s10194-019-1066-0
  4. Burstein R, Noseda R, Borsook D (2015) Migraine: Multiple Processes, Complex Pathophysiology. J Neurosci 35: 6619–6629. https://doi.org/10.1523/JNEUROSCI.0373-15.2015
  5. Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S (2017) Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 97: 553–622. https://doi.org/10.1152/physrev.00034.2015
  6. Malick A, Strassman RM, Burstein R (2000) Trigeminohypothalamic and Reticulohypothalamic Tract Neurons in the Upper Cervical Spinal Cord and Caudal Medulla of the Rat. J Neurophysiol 84: 2078–2112. https://doi.org/10.1152/jn.2000.84.4.2078
  7. Hoffmann J, Baca SM, Akerman S (2019) Neurovascular mechanisms of migraine and cluster headache. J Cereb Blood Flow Metab 39: 573–594. https://doi.org/10.1177/0271678X17733655
  8. Noseda R, Burstein R (2013) Migraine pathophysiology: Anatomy of the trigeminovascular pathway and associated neurological symptoms, cortical spreading depression, sensitization, and modulation of pain. Pain 154 Suppl 1: S44-S53. https://doi.org/10.1016/j.pain.2013.07.021
  9. Summ O, Charbit AR, Andreou AP, Goadsby PJ (2010) Modulation of nocioceptive transmission with calcitonin gene-related peptide receptor antagonists in the thalamus. Brain J Neurol 133: 2540–2548. https://doi.org/10.1093/brain/awq224
  10. Edvinsson L, Fredholm BB, Hamel E, Jansen I, Verrecchia C (1985) Perivascular peptides relax cerebral arteries concomitant with stimulation of cyclic adenosine monophosphate accumulation or release of an endothelium-derived relaxing factor in the cat. Neurosci Lett 58: 213–217. https://doi.org/10.1016/0304-3940(85)90166-1
  11. Sevivas H, Fresco P (2022) Treatment of resistant chronic migraine with anti-CGRP monoclonal antibodies: A systematic review. Eur J Med Res 27: 86. https://doi.org/10.1186/s40001-022-00716-w
  12. Karsan N, Gosalia H, Goadsby PJ (2023) Molecular Mechanisms of Migraine: Nitric Oxide Synthase and Neuropeptides. Int J Mol Sci 24. https://doi.org/10.3390/ijms241511993
  13. Charles A (2013) Migraine: a brain state. Curr Opin Neurol 26: 235. https://doi.org/10.1097/WCO.0b013e32836085f4
  14. Ayata C (2013) Spreading depression and neurovascular coupling. Stroke 44: S87-S89. https://doi.org/10.1161/STROKEAHA.112.680264
  15. Olesen J, Tfelt-Hansen P, Henriksen L, Larsen B (1981) The common migraine attack may not be initiated by cerebral ischaemia. The Lancet 318: 438–440. https://doi.org/10.1016/S0140-6736(81)90774-1
  16. Lauritzen M, Dreier JP, Fabricius M, Hartings JA, Graf R, Strong AJ (2011) Clinical relevance of cortical spreading depression in neurological disorders: Migraine, malignant stroke, subarachnoid and intracranial hemorrhage, and traumatic brain injury. J Cereb Blood Flow Metab 31: 17–35. https://doi.org/10.1038/JCBFM.2010.191
  17. Charles A (2009) Advances in the basic and clinical science of migraine. Ann Neurol 65: 491–498. https://doi.org/10.1002/ana.21691
  18. Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17: 439–447. https://doi.org/10.1038/nm.2333
  19. Close LN, Eftekhari S, Wang M, Charles AC, Russo AF (2019) Cortical spreading depression as a site of origin for migraine: Role of CGRP. Cephalalgia 39: 428–434. https://doi.org/10.1177/0333102418774299
  20. Sramka M, Brozek G, Bures J, Nádvorník P (1977) Functional ablation by spreading depression: possible use in human stereotactic neurosurgery. Appl Neurophysiol 40: 48–61.
  21. De Iure A, Napolitano F, Beck G, Quiroga Varela A, Durante V, Sciaccaluga M, Mazzocchetti P, Megaro A, Tantucci M, Cardinale A, Punzo D, Mancini A, Costa C, Ghiglieri V, Tozzi A, Picconi B, Papa SM, Usiello A, Calabresi P (2019) Striatal spreading depolarization: Possible implication in levodopa-induced dyskinetic-like behavior. Mov Disord 34: 832–844. https://doi.org/10.1002/mds.27632
  22. Sato S, Kawauchi S, Okuda W, Nishidate I, Nawashiro H, Tsumatori G (2014) Real-Time Optical Diagnosis of the Rat Brain Exposed to a Laser-Induced Shock Wave: Observation of Spreading Depolarization, Vasoconstriction and Hypoxemia-Oligemia. PLoS One 9: e82891. https://doi.org/10.1371/journal.pone.0082891
  23. Lambert G, Michalicek J (1994) Cortical Spreading Depression Reduces Dural Blood Flow a Possible Mechanism for Migraine Pain? Cephalalgia 14: 430–436. https://doi.org/10.1046/j.1468-2982.1994.1406430.x
  24. Goadsby PJ, Knight YE, Hoskin KL, Butler P (1997) Stimulation of an intracranial trigeminally-innervated structure selectively increases cerebral blood flow1. Brain Res 751: 247–252. https://doi.org/10.1016/S0006-8993(96)01344-3
  25. Bigal M (2009) Migraine chronification - concept and risk factors. Discov Med 8:145–150.
  26. Beaulieu J-M, Gainetdinov RR (2011) The Physiology, Signaling, and Pharmacology of Dopamine Receptors. Pharmacol Rev 63: 182–217.https://doi.org/10.1124/pr.110.002642
  27. Mehler-Wex C, Riederer P, Gerlach M (2006) Dopaminergic dysbalance in distinct basal ganglia neurocircuits: Implications for the pathophysiology of parkinson’s disease, schizophrenia and attention deficit hyperactivity disorder. Neurotox Res 10: 167–179. https://doi.org/10.1007/BF03033354
  28. Musienko P, Brand R van den, Märzendorfer O, Roy RR, Gerasimenko Y, Edgerton VR, Courtine G (2011) Controlling Specific Locomotor Behaviors through Multidimensional Monoaminergic Modulation of Spinal Circuitries. J Neurosci 31: 9264–9278. https://doi.org/10.1523/JNEUROSCI.5796-10.2011
  29. Lewis DA, Campbell MJ, Foote SL, Goldstein M, Morrison JH (1987) The distribution of tyrosine hydroxylase-immunoreactive fibers in primate neocortex is widespread but regionally specific. J Neurosci 7: 279–290. https://doi.org/10.1523/jneurosci.07-01-00279.1987
  30. Descarries L, Lemay B, Doucet G, Berger B (1987) Regional and laminar density of the dopamine innervation in adult rat cerebral cortex. Neuroscience 21: 807–824. https://doi.org/10.1016/0306-4522(87)90038-8
  31. Lidow MS, Goldman-Rakic PS, Gallager DW, Rakic P (1991) Distribution of dopaminergic receptors in the primate cerebral cortex: Quantitative autoradiographic analysis using [3H]raclopride, [3H]spiperone and [3H]SCH23390. Neuroscience 40: 657–671. https://doi.org/10.1016/0306-4522(91)90003-7
  32. Phillipson OT, Kilpatrick IC, Jones MW (1987) Dopaminergic innervation of the primary visual cortex in the rat, and some correlations with human cortex. Brain Res Bull 18: 621–633. https://doi.org/10.1016/0361-9230(87)90132-8
  33. Papadopoulos GC, Parnavelas JG (1990) Distribution and synaptic organization of dopaminergic axons in the lateral geniculate nucleus of the rat. J Comp Neurol 294: 356–361. https://doi.org/10.1002/cne.902940305
  34. Hurd YL, Suzuki M, Sedvall GC (2001) D1 and D2 dopamine receptor mRNA expression in whole hemisphere sections of the human brain. J Chem Neuroanat 22: 127–137. https://doi.org/10.1016/S0891-0618(01)00122-3
  35. Sicuteri F (1977) Dopamine, the second putative protagonist in headache. Headache 17: 129–131. https://doi.org/10.1111/j.1526-4610.1977.hed1703129.x
  36. Güell A, Géraud G, Jauzac Ph, Victor G, Arné-Bès MC (1982) Effects of a Dopaminergic Agonist (Piribedil) on Cerebral Blood Flow in Man. J Cereb Blood Flow Metab 2: 255–257. https://doi.org/10.1038/jcbfm.1982.26
  37. Del Zompo M, Lai M, Loi V, Pisano MR (1995) Dopamine Hypersensitivity in Migraine: Role in Apomorphine Syncope. Headache J Head Face Pain 35: 222–224. https://doi.org/10.1111/j.1526-4610.1995.hed3504222.x
  38. Fanciullacci M, Michelacci S, Curradi C, Sicuteri F (1980) Hyperresponsiveness of Migraine Patients to the Hypotensive Action of Bromocriptine. Headache J Head Face Pain 20: 99–102. https://doi.org/10.1111/j.1526-4610.1980.hed2002099.x
  39. Nagel-Leiby S, Welch K, D’Andrea G, Grunfeld S, Brown E (1990) Event-Related Slow Potentials and Associated Catecholamine Function in Migraine. Cephalalgia 10: 317–329. https://doi.org/10.1046/j.1468-2982.1990.1006317.x
  40. Gruber H-J, Bernecker C, Pailer S, Lechner A, Horejsi R, Möller R, Fazekas F, Truschnig-Wilders M (2010) Increased Dopamine Is Associated With the cGMP and Homocysteine Pathway in Female Migraineurs. Headache J Head Face Pain 50: 109–116. https://doi.org/10.1111/j.1526-4610.2009.01533.x
  41. DaSilva AF, Nascimento TD, Jassar H, Heffernan J, Toback RL, Lucas S, DosSantos MF, Bellile EL, Boonstra PS, Taylor JMG, Casey KL, Koeppe RA, Smith YR, Zubieta J-K (2017) Dopamine D2/D3 imbalance during migraine attack and allodynia in vivo. Neurology 88: 1634–1641. https://doi.org/10.1212/WNL.0000000000003861
  42. Marino S, Jassar H, Kim DJ, Lim M, Nascimento TD, Dinov ID, Koeppe RA, DaSilva AF (2023) Classifying migraine using PET compressive big data analytics of brain’s μ-opioid and D2/D3 dopamine neurotransmission. Front Pharmacol 14: 1173596. https://doi.org/10.3389/fphar.2023.1173596
  43. Barbanti P, Fabbrini G (2002) Migraine and the extrapyramidal system. Cephalalgia Int J Headache 22: 2–11. https://doi.org/10.1046/j.1468-2982.2002.00313.x
  44. D’Andrea G, Granella F, Perini F, Farruggio A, Leone M, Bussone G (2006) Platelet Levels of Dopamine Are Increased in Migraine and Cluster Headache. Headache J Head Face Pain 46: 585–591. https://doi.org/10.1111/j.1526-4610.2006.00407.x
  45. Barbanti P, Fofi L, Aurilia C, Egeo G (2013) Dopaminergic symptoms in migraine. Neurol Sci 34: 67–70. https://doi.org/10.1007/s10072-013-1415-8
  46. Barbanti P, Fabbrini G, Ricci A, Pascali MP, Bronzetti E, Amenta F, Lenzi G, Cerbo R (2000) Migraine Patients Show an Increased Density of Dopamine D3 and D4 Receptors on Lymphocytes. Cephalalgia 20: 15–19. https://doi.org/10.1046/j.1468-2982.2000.00001.x
  47. Cubo E, Kompoliti K, Leurgans SE, Raman R (2004) Dopaminergic Hypersensitivity in Patients with Parkinson Disease and Migraine. Clin Neuropharmacol (1): 30–32. https://doi.org/10.1097/00002826-200401000-00009.
  48. Schulz RS, Glatz T, Buring JE, Rist PM, Kurth T (2024) Migraine and Risk of Parkinson Disease in Women. Neurology 103: e209747. https://doi.org/10.1212/WNL.0000000000209747
  49. Miguelez C, Morera-Herreras T, Torrecilla M, Ruiz-Ortega JA, Ugedo L (2014) Interaction between the 5-HT system and the basal ganglia: Functional implication and therapeutic perspective in Parkinson’s disease. Front Neural Circuits 8: 21. https://doi.org/10.3389/fncir.2014.00021
  50. Charbit AR, Akerman S, Goadsby PJ (2009) Comparison of the Effects of Central and Peripheral Dopamine Receptor Activation on Evoked Firing in the Trigeminocervical Complex. J Pharmacol Exp Ther 331: 752–763. https://doi.org/10.1124/jpet.109.151951
  51. Cornil CA, Ball GF (2008) Interplay Among Catecholamine Systems: Dopamine Binds to a2-adrenergic Receptors in Birds and Mammals. J Comp Neurol 511: 610–627. https://doi.org/10.1002/cne.21861
  52. Akerman S, Goadsby PJ (2005) The role of dopamine in a model of trigeminovascular nociception. J Pharmacol Exp Ther 314: 162–169. https://doi.org/10.1124/jpet.105.083139
  53. Akerman S, Williamson DJ, Hill RG, Goadsby PJ (2001) The effect of adrenergic compounds on neurogenic dural vasodilatation. Eur J Pharmacol 424: 53–58. https://doi.org/10.1016/S0014-2999(01)01111-6
  54. Seghatoleslam M, Ghadiri MK, Ghaffarian N, Speckmann E-J, Gorji A (2014) Cortical spreading depression modulates the caudate nucleus activity. Neuroscience 267: 83–90. https://doi.org/10.1016/j.neuroscience.2014.02.029
  55. Haghir H, Kovac S, Speckmann E-J, Zilles K, Gorji A (2009) Patterns of neurotransmitter receptor distributions following cortical spreading depression. Neuroscience 163: 1340–1352. https://doi.org/10.1016/j.neuroscience.2009.07.067
  56. Liu S, Shu H, Crawford J, Ma Y, Li C, Tao F (2020) Optogenetic Activation of Dopamine Receptor D1 and D2 Neurons in Anterior Cingulate Cortex Differentially Modulates Trigeminal Neuropathic Pain. Mol Neurobiol 57: 4060–4068. https://doi.org/10.1007/s12035-020-02020-2
  57. Zhang W, Lei M, Wen Q, Zhang D, Qin G, Zhou J, Chen L (2022) Dopamine receptor D2 regulates GLUA1-containing AMPA receptor trafficking and central sensitization through the PI3K signaling pathway in a male rat model of chronic migraine. J Headache Pain 23. https://doi.org/10.1186/s10194-022-01469-x
  58. Choi I-S, Cho J-H, Jang I-S (2010) Dopamine inhibition of glycine release in the rat trigeminal nucleus pars caudalis: Possible involvement of trace amine receptors. J Neurochem 114: 1639–1650. https://doi.org/10.1111/j.1471-4159.2010.06870.x
  59. Liu S, Tang Y, Shu H, Tatum D, Bai Q, Crawford J, Xing Y, Lobo MK, Bellinger L, Kramer P, Tao F (2019) Dopamine receptor D2, but not D1, mediates descending dopaminergic pathway–produced analgesic effect in a trigeminal neuropathic pain mouse model. PAIN 160: 334. https://doi.org/10.1097/j.pain.0000000000001414
  60. Bergerot A, Storer RJ, Goadsby PJ (2007) Dopamine inhibits trigeminovascular transmission in the rat. Ann Neurol 61: 251–262. https://doi.org/10.1002/ana.21077
  61. Borowsky B, Adham N, Jones KA, Raddatz R, Artymyshyn R, Ogozalek KL, Durkin MM, Lakhlani PP, Bonini JA, Pathirana S, Boyle N, Pu X, Kouranova E, Lichtblau H, Ochoa FY, Branchek TA, Gerald C (2001) Trace amines: Identification of a family of mammalian G protein-coupled receptors. Proc Natl Acad Sci U S A 98: 8966–8971. https://doi.org/10.1073/pnas.151105198
  62. Koch HJ, Jürgens TP (2009) Antidepressants in Long-Term Migraine Prevention. Drugs 69: 1–19. https://doi.org/10.2165/00003495-200969010-00001
  63. Couch JR, Hassanein RS (1979) Amitriptyline in migraine prophylaxis. Arch Neurol 36: 695–699. https://doi.org/10.1001/archneur.1979.00500470065013
  64. Doyle A, McGarry MP, Lee NA, Lee JJ (2012) The construction of transgenic and gene knockout/knockin mouse models of human disease. Transgenic Res 21: 327–349. https://doi.org/10.1007/s11248-011-9537-3
  65. Kurzina NP, Aristova IY, Volnova AB, Gainetdinov RR (2020) Deficit in working memory and abnormal behavioral tactics in dopamine transporter knockout rats during training in the 8-arm maze. Behav Brain Res 390: 112642. https://doi.org/10.1016/j.bbr.2020.112642
  66. Leo D, Sukhanov I, Zoratto F, Illiano P, Caffino L, Sanna F, Messa G, Emanuele M, Esposito A, Dorofeikova M, Budygin EA, Mus L, Efimova EV, Niello M, Espinoza S, Sotnikova TD, Hoener MC, Laviola G, Fumagalli F, Adriani W, Gainetdinov RR (2018) Pronounced Hyperactivity, Cognitive Dysfunctions, and BDNF Dysregulation in Dopamine Transporter Knock-out Rats. J Neurosci 38: 1959–1972. https://doi.org/10.1523/JNEUROSCI.1931-17.2018
  67. Gainetdinov RR, Caron MG (2003) Monoamine Transporters: From Genes to Behavior. Annu Rev Pharmacol Toxicol 43: 261–284. https://doi.org/10.1146/annurev.pharmtox.43.050802.112309
  68. Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: Structure, regulation and function. Nat Rev Neurosci 4: 13–25. https://doi.org/10.1038/nrn1008
  69. Sotnikova TD, Caron MG, Gainetdinov RR (2006) DDD mice, a novel acute mouse model of Parkinson’s disease. Neurology 67: S12–S17. https://doi.org/10.1212/WNL.67.7_suppl_2.S12
  70. Mallien AS, Becker L, Pfeiffer N, Terraneo F, Hahn M, Middelman A, Palme R, Creutzberg KC, Begni V, Riva MA, Leo D, Potschka H, Fumagalli F, Homberg JR, Gass P (2022) Dopamine Transporter Knockout Rats Show Impaired Wellbeing in a Multimodal Severity Assessment Approach. Front Behav Neurosci 16. https://doi.org/10.3389/fnbeh.2022.924603
  71. Vollono C, Vigevano F, Valeriani M (2009) Somatosensory system excitability in migraine. Paediatr Child Health 19: S22–S27. https://doi.org/10.1016/j.paed.2009.05.030
  72. Meylakh N, Henderson LA (2022) Exploring alterations in sensory pathways in migraine. J Headache Pain 23: 5. https://doi.org/10.1186/s10194-021-01371-y
  73. Lipton RB, Bigal ME, Ashina S, Burstein R, Silberstein S, Reed ML, Serrano D, Stewart WF, American Migraine Prevalence Prevention Advisory Group (2008) Cutaneous allodynia in the migraine population. Ann Neurol 63: 148–158. https://doi.org/10.1002/ana.21211
  74. Schwedt TJ, Zuniga L, Chong CD (2015) Low heat pain thresholds in migraineurs between attacks. Cephalalgia 35: 593–599. https://doi.org/10.1177/0333102414550417
  75. Landy S, Rice K, Lobo B (2004) Central Sensitisation and Cutaneous Allodynia in Migraine. CNS Drugs 18: 337–342. https://doi.org/10.2165/00023210-200418060-00001
  76. Chong CD, Plasencia JD, Frakes DH, Schwedt TJ (2017) Structural alterations of the brainstem in migraine. NeuroImage Clin 13: 223–227. https://doi.org/10.1016/j.nicl.2016.10.023
  77. Moulton EA, Burstein R, Tully S, Hargreaves R, Becerra L, Borsook D (2008) Interictal dysfunction of a brainstem descending modulatory center in migraine patients. PloS One 3: e3799. https://doi.org/10.1371/journal.pone.0003799
  78. Kim JH, Kim JB, Suh S, Seo W-K, Oh K, Koh S-B (2014) Thickening of the somatosensory cortex in migraine without aura. Cephalalgia Int J Headache 34: 1125–1133. https://doi.org/10.1177/0333102414531155
  79. Lang E, Kaltenhäuser M, Neundörfer B, Seidler S (2004) Hyperexcitability of the primary somatosensory cortex in migraine–a magnetoencephalographic study. Brain 127: 2459–2469. https://doi.org/10.1093/brain/awh295
  80. Neuhauser H, Leopold M, von Brevern M, Arnold G, Lempert T (2001) The interrelations of migraine, vertigo, and migrainous vertigo. Neurology 56: 436–441. https://doi.org/10.1212/wnl.56.4.436
  81. Dieterich M, Obermann M, Celebisoy N (2016) Vestibular migraine: The most frequent entity of episodic vertigo. J Neurol 263: 82–89. https://doi.org/10.1007/s00415-015-7905-2
  82. Ketzef M, Spigolon G, Johansson Y, Bonito-Oliva A, Fisone G, Silberberg G (2017) Dopamine Depletion Impairs Bilateral Sensory Processing in the Striatum in a Pathway-Dependent Manner. Neuron 94: 855-865.e5. https://doi.org/10.1016/j.neuron.2017.05.004
  83. Macedo-Lima M, Remage-Healey L (2021) Dopamine Modulation of Motor and Sensory Cortical Plasticity among Vertebrates. Integr Comp Biol 61: 316–336. https://doi.org/10.1093/icb/icab019
  84. Jamal T, Yan X, Lantyer A da S, Ter Horst JG, Celikel T (2024) Experience-dependent regulation of dopaminergic signaling in the somatosensory cortex. Prog Neurobiol 239: 102630. https://doi.org/10.1016/j.pneurobio.2024.102630
  85. Shyr MH, Tsai TH, Yang CH, Chen HM, Ng HF, Tan PP (1997) Propofol anesthesia increases dopamine and serotonin activities at the somatosensory cortex in rats: А microdialysis study. Anesth Analg 84: 1344–1348. https://doi.org/10.1097/00000539-199706000-00031
  86. López-Avila A, Coffeen U, Ortega-Legaspi MJ, del Ángel R, Pellicer F (2004) Dopamine and NMDA systems modulate long-term nociception in the rat anterior cingulate cortex. PAIN 111: 136. https://doi.org/10.1016/j.pain.2004.06.010
  87. Burkey AR, Carstens E, Jasmin L (1999) Dopamine Reuptake Inhibition in the Rostral Agranular Insular Cortex Produces Antinociception. J Neurosci 19: 4169–4179. https://doi.org/10.1523/JNEUROSCI.19-10-04169.1999
  88. Pardutz A, Schoenen J (2010) NSAIDs in the Acute Treatment of Migraine: A Review of Clinical and Experimental Data. Pharmaceuticals 3: 1966–1987. https://doi.org/10.3390/ph3061966
  89. Cameron C, Kelly S, Hsieh S-C, Murphy M, Chen L, Kotb A, Peterson J, Coyle D, Skidmore B, Gomes T, Clifford T, Wells G (2015) Triptans in the Acute Treatment of Migraine: A Systematic Review and Network Meta-Analysis. Headache J Head Face Pain 55: 221–235. https://doi.org/10.1111/head.12601
  90. Buse DC, Rupnow MF, Lipton RB (2009) Assessing and managing all aspects of migraine: Мigraine attacks, migraine-related functional impairment, common comorbidities, and quality of life. In: Mayo Clinic Proceedings. Elsevier. 422–435.
  91. Kristoffersen ES, Grande RB, Aaseth K, Russell MB, Lundqvist C (2018) Medication-overuse headache detoxification reduces headache disability – the Akershus study of chronic headache. Eur J Neurol 25: 1140–1147. https://doi.org/10.1111/ene.13674
  92. Lan L, Zhang X, Li X, Rong X, Peng Y (2017) The efficacy of transcranial magnetic stimulation on migraine: А meta-analysis of randomized controlled trails. J Headache Pain 18: 86. https://doi.org/10.1186/s10194-017-0792-4
  93. Leahu P, Matei A, Groppa S (2018) Transcranial magnetic stimulation in migraine prophylaxis. J Med Life 11: 175–176.
  94. Ayache SS, Chalah MA (2020) Transcranial Direct Current Stimulation and Migraine – the Beginning of a Long Journey. J Clin Med 9: 1194. https://doi.org/10.3390/jcm9041194
  95. Ornello R, Caponnetto V, Ratti S, D’Aurizio G, Rosignoli C, Pistoia F, Ferrara M, Sacco S, D’Atri A (2021) Which is the best transcranial direct current stimulation protocol for migraine prevention? A systematic review and critical appraisal of randomized controlled trials. J Headache Pain 22: 144. https://doi.org/10.1186/s10194-021-01361-0
  96. De Carvalho AC, Marques ALC, Ferreira LL, de Brito FX, Baptista AF, da Silva ML, da Silva JRT (2022) Transcutaneous Vagus Nerve Stimulation: An Alternative Treatment of Chronic Migraine – a Systematic Review. SN Compr Clin Med 4: 188. https://doi.org/10.1007/s42399-022-01268-0
  97. Ellens DJ, Levy RM (2011) Peripheral Neuromodulation for Migraine Headache. https://doi.org/10.1159/000323890
  98. Puledda F, Shields K (2018) Non-Pharmacological Approaches for Migraine. Neurotherapeutics 15: 336–345. https://doi.org/10.1007/s13311-018-0623-6
  99. Al-Kaisy A, Palmisani S, Carganillo R, Wesley S, Pang D, Rotte A, Santos A, Lambru G (2022) Safety and Efficacy of 10 kHz Spinal Cord Stimulation for the Treatment of Refractory Chronic Migraine: A Prospective Long-Term Open-Label Study. Neuromodulation 25: 103–113. https://doi.org/10.1111/NER.13465
  100. Shealy CN, Mortimer JT, Reswick JB (1967) Electrical Inhibition of Pain by Stimulation of the Dorsal Columns: Preliminary Clinical Report. Anesth Analg 46: 489.
  101. Melzack R, Wall PD (1965) Pain mechanisms: A new theory. Science 150: 971–979. https://doi.org/10.1126/science.150.3699.971
  102. Barolat G (1995) Current Status of Epidural Spinal Cord Stimulation. Neurosurg Q 5: 98.
  103. Simpson BA (1991) Spinal cord stimulation in 60 cases of intractable pain. J Neurol Neurosurg Psychiatry 54: 196–199. https://doi.org/10.1136/jnnp.54.3.196
  104. North RB, Roark GL (1995) Spinal Cord Stimulation for Chronic Pain. Neurosurg Clin N Am 6: 145–155. https://doi.org/10.1016/S1042-3680(18)30483-2
  105. Mingoli A, Sciacca V, Tamorri M, Fiume D, Sapienza P (1993) Clinical Results of Epidural Spinal Cord Electrical Stimulation in Patients Affected with Limb-Threatening Chronic Arterial Obstructive Disease. Angiology 44: 21–25. https://doi.org/10.1177/000331979304400104
  106. Harke H, Ladleif H-U, Rethage B, Grosser KD (1993) Epidurale Rückenmarkstimulation bei therapieresistenter Angina pectoris. Epidurale Rückenmarkstimulation Bei Ther Angina Pectoris 42: 557–563.
  107. Kimura K, Mori Y (1993) Anesthesia with epidural spinal cord stimulation-I). Its application to general anesthesia. Masui 42: 985–989.
  108. Richardson RR, Cerullo LJ, McLone DG, Gutierrez FA, Lewis V (1979) Percutaneous epidural neurostimulation in modulation of paraplegic spasticity. Acta Neurochir (Wien) 49: 235–243. https://doi.org/10.1007/BF01808963
  109. Pinter MM, Gerstenbrand F, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 3. Control of spasticity. Spinal Cord 38: 524–531. https://doi.org/10.1038/sj.sc.3101040
  110. Gerasimenko YP, Lavrov IA, Courtine G, Ichiyama RM, Dy CJ, Zhong H, Roy RR, Edgerton VR (2006) Spinal cord reflexes induced by epidural spinal cord stimulation in normal awake rats. J Neurosci Methods 157: 253–263. https://doi.org/10.1016/j.jneumeth.2006.05.004
  111. Мусиенко ПЕ, Горский ОВ, Килимник ВА, Козловская ИБ, Куртин Г, Эджертон ВР, Герасименко ЮП (2013) Регуляция позы и локомоции у децеребрированных и спинализированных животных. Росс физиол журн им Сеченова 99: 392–405. [Musienko PE, Gorsky OV, Kilimnik VA, Kozlovskaya IB, Courtine G, Edgerton VR, Gerasimenko YP (2013) Regulation of Posture and Locomotion in Decerebrated and Spinalized Animals. Russ J Physiol 99: 392–405. (In Russ)].
  112. Wenger N, Moraud EM, Gandar J, Musienko P, Capogrosso M, Baud L, Le Goff CG, Barraud Q, Pavlova N, Dominici N, Minev IR, Asboth L, Hirsch A, Duis S, Kreider J, Mortera A, Haverbeck O, Kraus S, Schmitz F, DiGiovanna J, van den Brand R, Bloch J, Detemple P, Lacour SP, Bézard E, Micera S, Courtine G (2016) Spatiotemporal neuromodulation therapies engaging muscle synergies improve motor control after spinal cord injury. Nat Med 22: 138–145. https://doi.org/10.1038/nm.4025
  113. Finnern MT, D’Souza RS, Jin MY, Abd-Elsayed AA (2023) Cervical Spinal Cord Stimulation for the Treatment of Headache Disorders: A Systematic Review. Neuromodulation Technol Neural Interface 26: 1309–1318. https://doi.org/10.1016/j.neurom.2022.10.060
  114. Holsheimer J (1998) Computer modelling of spinal cord stimulation and its contribution to therapeutic efficacy. Spinal Cord 36: 531–540. https://doi.org/10.1038/sj.sc.3100717
  115. Rattay F, Minassian K, Dimitrijevic MR (2000) Epidural electrical stimulation of posterior structures of the human lumbosacral cord: 2. quantitative analysis by computer modeling. Spinal Cord 38: 473–489. https://doi.org/10.1038/sj.sc.3101039
  116. Capogrosso M, Wenger N, Raspopovic S, Musienko P, Beauparlant J, Luciani LB, Courtine G, Micera S (2013) A computational model for epidural electrical stimulation of spinal sensorimotor circuits. J Neurosci 33: 19326–19340. https://doi.org/10.1523/JNEUROSCI.1688-13.2013
  117. Musienko PE, Pavlova NV, Selionov VA, Gerasimenko IP (2009) Locomotion induced by epidural stimulation in decerebrate cat after spinal cord injury. Biofizika 54: 293–300.
  118. Musienko P, Heutschi J, Friedli L, den Brand R van, Courtine G (2012) Multi-system neurorehabilitative strategies to restore motor functions following severe spinal cord injury. Exp Neurol 235: 100–109. https://doi.org/10.1016/j.expneurol.2011.08.025
  119. Schomburg ED, Steffens H, Kniffki K-D (1999) Contribution of group III and IV muscle afferents to multisensorial spinal motor control in cats. Neurosci Res 33: 195–206. https://doi.org/10.1016/S0168-0102(99)00006-1
  120. Rossignol S, Dubuc R, Gossard J-P (2006) Dynamic Sensorimotor Interactions in Locomotion. Physiol Rev 86: 89–154. https://doi.org/10.1152/physrev.00028.2005
  121. Fuentes R, Petersson P, Siesser WB, Caron MG, Nicolelis MAL (2009) Spinal Cord Stimulation Restores Locomotion in Animal Models of Parkinson’s disease. Science 323: 1578–1582. https://doi.org/10.1126/science.1164901
  122. Santana MB, Halje P, Simplício H, Richter U, Freire MAM, Petersson P, Fuentes R, Nicolelis MAL (2014) Spinal cord stimulation alleviates motor deficits in a primate model of Parkinson disease. Neuron 84: 716–722. https://doi.org/10.1016/j.neuron.2014.08.061
  123. Yadav AP, Nicolelis MAL (2017) Electrical stimulation of the dorsal columns of the spinal cord for Parkinson’s disease. Mov Disord 32: 820–832. https://doi.org/10.1002/mds.27033
  124. Afanasenkau D, Kalinina D, Lyakhovetskii V, Tondera C, Gorsky O, Moosavi S, Pavlova N, Merkulyeva N, Kalueff AV, Minev IR, Musienko P (2020) Rapid prototyping of soft bioelectronic implants for use as neuromuscular interfaces. Nat Biomed Eng 4: 1010–1022. https://doi.org/10.1038/s41551-020-00615-7
  125. Shkorbatova P, Lyakhovetskii V, Pavlova N, Popov A, Bazhenova E, Kalinina D, Gorskii O, Musienko P (2020) Mapping of the Spinal Sensorimotor Network by Transvertebral and Transcutaneous Spinal Cord Stimulation. Front Syst Neurosci 14. https://doi.org/10.3389/fnsys.2020.555593
  126. Courtine G, Gerasimenko Y, van den Brand R, Yew A, Musienko P, Zhong H, Song B, Ao Y, Ichiyama RM, Lavrov I, Roy RR, Sofroniew MV, Edgerton VR (2009) Transformation of nonfunctional spinal circuits into functional states after the loss of brain input. Nat Neurosci 12: 1333–1342. https://doi.org/10.1038/nn.2401
  127. van den Brand R, Heutschi J, Barraud Q, DiGiovanna J, Bartholdi K, Huerlimann M, Friedli L, Vollenweider I, Moraud EM, Duis S, Dominici N, Micera S, Musienko P, Courtine G (2012) Restoring Voluntary Control of Locomotion after Paralyzing Spinal Cord Injury. Science 336: 1182–1185. https://doi.org/10.1126/science.1217416
  128. Dominici N, Keller U, Vallery H, Friedli L, van den Brand R, Starkey ML, Musienko P, Riener R, Courtine G (2012) Versatile robotic interface to evaluate, enable and train locomotion and balance after neuromotor disorders. Nat Med 18: 1142–1147. https://doi.org/10.1038/nm.2845

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025