Expression of apoptosis, autophagy and necroptosis effectors in cells of rat hippocampus after excessive F- consumption

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The work examined the expression of apoptosis, autophagy and necroptosis markers in hippocampal cells of rats after long-term consumption of excessive F- doses at the transcriptional and translational levels. Male Wistar rats were divided into 4 groups receiving 0.4 (control), 5, 20 and 50 mg/l F- (as NaF) for 12 months. The changes in contents of effectors of mitochondrial (Bcl-2, Bax, Caspase-9, Caspase-3) and receptor (Caspase-8, Fas) pathways of apoptosis, mediators (Ulk-1, Beclin-1) and modulators (AMPK, Ark, mTOR) of autophagy, as well as that of necroptosis (RIP and MLKL) were assessed by immunoblotting, the gene expression (Bcl2, Bax, Casp3, Ulk1, Beclin1, Prkaa1, Akt, and mTor) – by real-time PCR. In the hippocampus of F – exposed animals, the expression ratio of Bcl2/Bax genes and Bcl-2/Bax proteins decreased, caspase-9 and caspase-3 were activated, but the level of caspase-8 and membrane Fas receptor remained stable. Long-term F- consumption had no effect on the content of autophagy initiator Ulk-1 and protein kinases AMPK, Akt and mTOR, but resulted in inhibition of key autophagy mediator Beclin-1. The expression level of necroptosis RIP and MLKL effectors in the hippocampal cells of rats received excessive F- did not change as well. Thus, long-term F- exposure was accompanied by activation of apoptosis, mainly through the mitochondrial pathway, at the background of autophagy suppression.

Full Text

Restricted Access

About the authors

O. V. Nadei

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Email: nagalak@mail.ru
Russian Federation, Saint-Petersburg

N. I. Agalakova

Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences

Author for correspondence.
Email: nagalak@mail.ru
Russian Federation, Saint-Petersburg

References

  1. Johnston NR, Strobel SA (2020) Principles of fluoride toxicity and the cellular response: a review. Arch Toxicol 94(4): 1051–1069. https://doi.org/10.1007/s00204-020-02687-5
  2. Shaji E, Sarath KV, Santosh M, Krishnaprasad PK, Arya BK, Manisha S Babu (2024) Fluoride contamination in groundwater: a global review of the status, processes, challenges, and remedial measures. Geosci Front 15: 101734. https://doi.org/10.1016/j.gsf.2023.101734
  3. Макеева ИМ, Волков АГ, Мусиев АА (2017) Эндемический флюороз зубов – причины, профилактика и лечение. Росс стоматол журн 21(6): 340–344. [Makeeva IM, Volkov AG, Musiev AA (2017) Endemic fluorosis of teeth – causes, prevention and treatment. Russ Stomatol J 21(6): 340–344. (In Russ)].
  4. Lubojanski A, Piesiak-Panczyszyn D, Zakrzewski W, Dobrzynski W, Szymonowicz M, Rybak Z, Mielan B, Wiglusz RJ, Watras A, Dobrzynski M (2023) The safety of fluoride compounds and their effect on the human body-a narrative review. Materials (Basel) 16(3): 1242. https://doi.org/10.3390/ma16031242
  5. Taher MK, Momoli F, Go J, Hagiwara S, Ramoju S, Hu X, Jensen N, Terrell R, Hemmerich A, Krewski D (2024) Systematic review of epidemiological and toxicological evidence on health effects of fluoride in drinking water. Crit Rev Toxicol 6: 1–33. https://doi.org/10.1080/10408444.2023.2295338
  6. Petrović B, Kojić S, Milić L, Luzio A, Perić T, Marković E, Stojanović GM (2023) Toothpaste ingestion-evaluating the problem and ensuring safety: systematic review and meta-analysis. Front Public Health 11: 1279915. https://doi.org/10.3389/fpubh.2023.1279915
  7. Veneri F, Iamandii I, Vinceti M, Birnbaum LS, Generali L, Consolo U, Filippini T (2023) Fluoride exposure and skeletal fluorosis: a systematic review and dose-response meta-analysis. Curr Environ Health Rep 10(4): 417–441. https://doi.org/10.1007/s40572-023-00412-9
  8. Agalakova NI, Nadei OV (2020) Inorganic fluoride and functions of brain. Crit Rev Toxicol 50(1): 28–46. https://doi.org/10.1080/10408444.2020.1722061
  9. Ottappilakkil H, Babu S, Balasubramanian S, Manoharan S, Perumal E (2023) Fluoride induced neurobehavioral impairments in experimental animals: a brief review. Biol Trace Elem Res 201(3): 1214–1236. https://doi.org/10.1007/s12011-022-03242-2
  10. Veneri F, Vinceti M, Generali L, Giannone ME, Mazzoleni E, Birnbaum LS, Consolo U. Filippini T (2023) Fluoride exposure and cognitive neurodevelopment: systematic review and dose-response meta-analysis. Environ Res 221: 115239. https://doi.org/10.1016/j.envres.2023.115239
  11. Nadei OV, Khvorova IA, Agalakova NI (2020) Cognitive decline of rats with chronic fluorosis is associated with alterations in hippocampal calpain signaling. Biol Trace Elem Res 197(2): 495–506. https://doi.org/10.1007/s12011-019-01993-z
  12. Надей ОВ, Иванова ТИ, Суфиева ДА, Агалакова НИ (2020) Морфологические изменения нейронов гиппокампа крыс как результат избыточного потребления фтора. Журн анат гистопатол 9(2): 53–60. [Nadei OV, Ivanova TI, Sufieva DA, Agalakova NI (2020) Morphological Changes of the Rat Hippocampal Neurons Following Excessive Fluoride Consumption. J Anat Histopathol 9(2): 53–60. (In Russ)]. https://doi.org/10.18499/2225-7357-2020-9-2-53-60
  13. Newton K, Strasser A, Kayagaki N, Dixit VM (2024) Cell death. Cell 187(2): 235–256. https://doi.org/10.1016/j.cell.2023.11.044
  14. Ai Y, Meng Y, Yan B, Zhou Q, Wang X (2024) The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death. Mol Cell 84(1): 170–179. https://doi.org/10.1016/j.molcel.2023.11.040
  15. Gupta R, Ambasta RK, Pravir Kumar (2021) Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 78(24): 8001–8047. https://doi.org/10.1007/s00018-021-04004-4
  16. Deng Z, Zhou X, Lu JH, Yue Z (2021) Autophagy deficiency in neurodevelopmental disorders. Cell Biosci 11(1): 214. https://doi.org/10.1186/s13578-021-00726-x
  17. Liénard C, Pintart A, Bomont P (2024) Neuronal autophagy: regulations and implications in health and disease. Cells 13(1): 103. https://doi.org/10.3390/cells13010103
  18. Agalakova NI, Gusev GP (2013) Excessive fluoride consumption leads to accelerated death of erythrocytes and anemia in rats. Biol Trace Elem Res 153(1–3): 340–349. https://doi.org/10.1007/s12011-013-9691-y
  19. Baselt RC (2004) Disposition of Toxic Drugs and Chemicals in Man. 7th ed. Biomedical Publications. Foster City. CA. 468–470. https://doi.org/10.1373/clinchem.2004.039271
  20. Nadei OV, Agalakova NI (2024) Optimal reference genes for RT-qPCR experiments in hippocampus and cortex of rats chronically exposed to excessive fluoride. Biol Trace Elem Res 202(1): 199–209. https://doi.org/10.1007/s12011-023-03646-8
  21. King LE, Hohorst L, Garcıá-Sáez AJ (2023) Expanding roles of BCL-2 proteins in apoptosis execution and beyond. J Cell Sci 136(22): jcs260790. https://doi.org/10.1242/jcs.260790
  22. Gong Q, Wang H, Zhou M, Zhou L, Wang R, Li Y (2024) B-cell lymphoma-2 family proteins in the crosshairs: Small molecule inhibitors and activators for cancer therapy. Med Res Rev 44(2): 707–737. https://doi.org/10.1002/med.21999
  23. Dixit VM (2023) The road to death: caspases, cleavage, and pores. Science Adv 9(17): eadi2011. https://doi.org/10.1126/sciadv.adi2011
  24. Sahoo G, Samal D, Khandayataray P, Murthy MK (2023) Review on caspases: key regulators of biological activities and apoptosis. Mol Neurobiol 60(10): 5805–5837. https://doi.org/10.1007/s12035-02-03433-5
  25. Ribeiro DA, Cardoso CM, Yujra VQ, De Barros Viana M, Aguiar O Jr, Pisani LP, Oshima CT (2017) Fluoride induces apoptosis in mammalian cells: in vitro and in vivo studies. Anticancer Res 37: 4767–4777. https://doi.org/10.21873/anticanres.11883
  26. Angwa LM, Nyadanu SD, Kanyugo AM, Adampah T, Pereira G (2023) Fluoride-induced apoptosis in non-skeletal tissues of experimental animals: A systematic review and meta-analysis. Heliyon 9(8): e18646. https://doi.org/10.1016/j.heliyon.2023.e18646
  27. Sun Y, Ke L, Zheng X, Li T, Ouyang W, Zhang Z (2017) Effects of different levels of calcium intake on brain cell apoptosis in fluorosis rat offspring and its molecular mechanisms. Biol Trace Elem Res 176(2): 355–366. https://doi.org/10.1007/s12011-016-0850-9
  28. Wei N, Dong YT, Deng J, Wang Y, Qi XL, Yu WF, Xiao Y, Zhou JJ, Guan ZZ (2018) Changed expressions of N-methyl-d-aspartate receptors in the brains of rats and primary neurons exposed to high level of fluoride. J Trace Elem Med Biol 45: 31–40. https://doi.org/10.1016/j.jtemb.2017.09.020
  29. Liu YJ, Guan ZZ, Gao Q, Pei JJ (2011) Increased level of apoptosis in rat brains and SH-SY5Y cells exposed to excessive fluoride – a mechanism connected with activating JNK phosphorylation. Toxicol Lett 204: 183–189. https://doi.org/10.1016/j.toxlet.2011.04.030
  30. Wang C, Liang C, Ma J, Manthari RK, Niu R, Wang J, Wang J, Zhang J (2018) Co-exposure to fluoride and sulfur dioxide on histological alteration and DNA damage in rat brain. J Biochem Mol Toxicol 32(2). https://doi.org/10.1002/jbt.22023
  31. Tang Y, Zhang J, Hu Z, Xu W, Xu P, Ma Y, Xing H, Niu Q (2023) PRKAA1 induces aberrant mitophagy in a PINK1/Parkin-dependent manner, contributing to fluoride-induced developmental neurotoxicity. Ecotoxicol Environ Saf 255: 114772. https://doi.org/10.1016/j.ecoenv.2023.114772
  32. Yan N, Liu Y, Liu S, Cao S, Wang F, Wang Z, Xi S (2016) Fluoride-induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain. Mol Neurobiol 53: 4449–4460. https://doi.org/10.1007/s12035-015-9380-2
  33. Liao Q, Zhang R, Wang X, Nian W, Ke L, Ouyang W, Zhang Z (2017) Effect of fluoride exposure on mRNA expression of cav1.2 and calcium signal pathway apoptosis regulators in PC12 cells. Environ Toxicol Pharmacol 54: 74–79. https://doi.org/10.1016/j.etap.2017.06.018
  34. Tu W, Zhang Q, Liu Y, Han L, Wang Q, Chen P, Zhang S, Wang A, Zhou X (2018) Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 347: 60–69. https://doi.org/10.1016/j.taap.2018.03.030
  35. Chen J, Rodriguez AS, Morales MA, Fang X (2023) Autophagy modulation and its implications on glioblastoma treatment. Curr Issues Mol Biol 45(11): 8687–8703. https://doi.org/10.3390/cimb45110546
  36. Menon MB, Dhamija S (2018) Beclin 1 Phosphorylation – at the center of autophagy regulation. Front Cell Dev Biol 6: 137. https://doi.org/10.3389/fcell.2018.00137
  37. Rong Z, Zheng K, Chen J, Jin X (2022) Function and regulation of ULK1: From physiology to pathology. Gene 840: 146772. https://doi.org/10.1016/j.gene.2022.146772
  38. Prerna K, Dubey VK (2022) Beclin1-mediated interplay between autophagy and apoptosis: new understanding. Int J Biol Macromol 204: 258–273. https://doi.org/10.1016/j.ijbiomac.2022.02.005
  39. Niu Q, Chen J, Xia T, Li P, Zhou G, Xu C, Zhao Q, Dong L, Zhang S, Wang A (2018) Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity. Environ Pollut 233: 889–899. https://doi.org/10.1016/j.envpol.2017.09.015
  40. Han X, Tang Y, Zhang Y, Zhang J, Hu Z, Xu W, Xu S, Niu Q (2022) Impaired V-ATPase leads to increased lysosomal pH, results in disrupted lysosomal degradation and autophagic flux blockage, contributes to fluoride-induced developmental neurotoxicity. Ecotoxicol Environ Saf 236: 113500. https://doi.org/10.1016/j.ecoenv.2022.113500
  41. Zhang L, Hu Z, Li Z, Lin Y (2024) Crosstalk among mitophagy, pyroptosis, ferroptosis, and necroptosis in central nervous system injuries. Neural Regen Res 19(8): 1660–1670. https://doi.org/10.4103/1673-5374.389361

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in the expression of anti-apoptotic protein Bcl-2 and pro-apoptotic protein Bax in the rat hippocampus after exposure to F- at the level of transcription and translation. (a) – Bcl2 and Bax gene expression levels in hippocampal cells normalized to the expression of the reference gene pair Eef1a1+Ppia (mean values ​​± SE, n = 7–9). (b) – Representative immunoblots for one rat from each group. (c) – Mean ± SE content of Bcl-2 and Bax proteins in hippocampal cells calculated in relation to the optical density of the reference protein GAPDH (n = 7). (d) – Ratio of Bcl-2 and Bax gene expression. (e) – Ratio of Bcl-2 and Bax protein levels. * p < 0.05, ** p < 0.01, *** p < 0.001 compared to the control group (Con).

Download (204KB)
3. Fig. 2. Level of caspase-9 in the hippocampus of rats fed excess F-. (a) Representative examples of immunoblots of native caspase-9 and active caspase-9 for one rat from each experimental group. (b) Mean ± SE content of the two forms of caspase-9 normalized to GAPDH (n = 5). * p < 0.05, *** p < 0.001 compared to control.

Download (91KB)
4. Fig. 3. Stimulation of caspase-3 in the hippocampus of rats fed excess F-. (a) Casp3 mRNA levels in hippocampal cells of rats from all experimental groups (mean ± SE, n = 8–10). (b) Representative examples of immunoblots of native caspase-3 and active caspase-3 for one rat from each experimental group. (c) Mean ± SE content of the two forms of caspase-3 normalized to GAPDH. (d) Changes in the ratio of procaspase-3 to active caspase-3 levels (n = 6). * p < 0.05, ** p < 0.01, *** p < 0.001 compared to the control.

Download (156KB)
5. Fig. 4. Protein expression of two forms of caspase-8 and Fas receptors in rat hippocampal cells after long-term exposure to F-. (a) Example of immunoblots for one animal from each group. (b) Average caspase-8 and Fas protein content ± SE in cells calculated relative to the content of the reference protein GAPDH (n = 4).

Download (120KB)
6. Fig. 5. Expression of autophagy mediators in the hippocampus of F-exposed rats. (a) Representative immunoblots and mean ± SE ULK-1 protein levels in hippocampal cells of rats treated with different doses of F- (n = 7). (b) Changes in Beclin1 gene expression in the hippocampus of animals treated with excess F- at the transcriptional level (n = 6). (c) Changes in Beclin-1 protein content in the hippocampus of animals after long-term F- consumption (n = 6). Representative immunoblots for one animal from each group and mean ± SE values ​​of native and phosphorylated (Ser30) Beclin-1 forms are shown. * p < 0.05, ** p < 0.01, *** p < 0.001, # p < 0.0001 compared to control.

Download (135KB)
7. Fig. 6. Expression of autophagy modulators AMPK, Akt and mTOR in the hippocampus of F-excess-treated rats at the transcriptional and translational levels. (a) Expression levels of Prkaa1, Akt and mTOR genes in rat hippocampal cells. (b) Representative immunoblots for one animal from each group. (c) Mean ± SE values ​​of AMPK, Akt and mTOR protein levels (n = 5).

Download (166KB)
8. Fig. 7. RIP and MLKL protein levels in the hippocampus of rats treated with different doses of F-. (a) Representative immunoblots for one animal from each group. (b) Mean ± SE values ​​of RIP and MLKL protein content in hippocampal cells (n = 5).

Download (85KB)

Copyright (c) 2024 Russian Academy of Sciences