Expression of apoptosis, autophagy and necroptosis effectors in cells of rat hippocampus after excessive F- consumption
- Authors: Nadei O.V.1, Agalakova N.I.1
-
Affiliations:
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
- Issue: Vol 110, No 9 (2024)
- Pages: 1362-1376
- Section: EXPERIMENTAL ARTICLES
- URL: https://modernonco.orscience.ru/0869-8139/article/view/651745
- DOI: https://doi.org/10.31857/S0869813924090062
- EDN: https://elibrary.ru/AJZMRG
- ID: 651745
Cite item
Abstract
The work examined the expression of apoptosis, autophagy and necroptosis markers in hippocampal cells of rats after long-term consumption of excessive F- doses at the transcriptional and translational levels. Male Wistar rats were divided into 4 groups receiving 0.4 (control), 5, 20 and 50 mg/l F- (as NaF) for 12 months. The changes in contents of effectors of mitochondrial (Bcl-2, Bax, Caspase-9, Caspase-3) and receptor (Caspase-8, Fas) pathways of apoptosis, mediators (Ulk-1, Beclin-1) and modulators (AMPK, Ark, mTOR) of autophagy, as well as that of necroptosis (RIP and MLKL) were assessed by immunoblotting, the gene expression (Bcl2, Bax, Casp3, Ulk1, Beclin1, Prkaa1, Akt, and mTor) – by real-time PCR. In the hippocampus of F – exposed animals, the expression ratio of Bcl2/Bax genes and Bcl-2/Bax proteins decreased, caspase-9 and caspase-3 were activated, but the level of caspase-8 and membrane Fas receptor remained stable. Long-term F- consumption had no effect on the content of autophagy initiator Ulk-1 and protein kinases AMPK, Akt and mTOR, but resulted in inhibition of key autophagy mediator Beclin-1. The expression level of necroptosis RIP and MLKL effectors in the hippocampal cells of rats received excessive F- did not change as well. Thus, long-term F- exposure was accompanied by activation of apoptosis, mainly through the mitochondrial pathway, at the background of autophagy suppression.
Keywords
Full Text

About the authors
O. V. Nadei
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Email: nagalak@mail.ru
Russian Federation, Saint-Petersburg
N. I. Agalakova
Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences
Author for correspondence.
Email: nagalak@mail.ru
Russian Federation, Saint-Petersburg
References
- Johnston NR, Strobel SA (2020) Principles of fluoride toxicity and the cellular response: a review. Arch Toxicol 94(4): 1051–1069. https://doi.org/10.1007/s00204-020-02687-5
- Shaji E, Sarath KV, Santosh M, Krishnaprasad PK, Arya BK, Manisha S Babu (2024) Fluoride contamination in groundwater: a global review of the status, processes, challenges, and remedial measures. Geosci Front 15: 101734. https://doi.org/10.1016/j.gsf.2023.101734
- Макеева ИМ, Волков АГ, Мусиев АА (2017) Эндемический флюороз зубов – причины, профилактика и лечение. Росс стоматол журн 21(6): 340–344. [Makeeva IM, Volkov AG, Musiev AA (2017) Endemic fluorosis of teeth – causes, prevention and treatment. Russ Stomatol J 21(6): 340–344. (In Russ)].
- Lubojanski A, Piesiak-Panczyszyn D, Zakrzewski W, Dobrzynski W, Szymonowicz M, Rybak Z, Mielan B, Wiglusz RJ, Watras A, Dobrzynski M (2023) The safety of fluoride compounds and their effect on the human body-a narrative review. Materials (Basel) 16(3): 1242. https://doi.org/10.3390/ma16031242
- Taher MK, Momoli F, Go J, Hagiwara S, Ramoju S, Hu X, Jensen N, Terrell R, Hemmerich A, Krewski D (2024) Systematic review of epidemiological and toxicological evidence on health effects of fluoride in drinking water. Crit Rev Toxicol 6: 1–33. https://doi.org/10.1080/10408444.2023.2295338
- Petrović B, Kojić S, Milić L, Luzio A, Perić T, Marković E, Stojanović GM (2023) Toothpaste ingestion-evaluating the problem and ensuring safety: systematic review and meta-analysis. Front Public Health 11: 1279915. https://doi.org/10.3389/fpubh.2023.1279915
- Veneri F, Iamandii I, Vinceti M, Birnbaum LS, Generali L, Consolo U, Filippini T (2023) Fluoride exposure and skeletal fluorosis: a systematic review and dose-response meta-analysis. Curr Environ Health Rep 10(4): 417–441. https://doi.org/10.1007/s40572-023-00412-9
- Agalakova NI, Nadei OV (2020) Inorganic fluoride and functions of brain. Crit Rev Toxicol 50(1): 28–46. https://doi.org/10.1080/10408444.2020.1722061
- Ottappilakkil H, Babu S, Balasubramanian S, Manoharan S, Perumal E (2023) Fluoride induced neurobehavioral impairments in experimental animals: a brief review. Biol Trace Elem Res 201(3): 1214–1236. https://doi.org/10.1007/s12011-022-03242-2
- Veneri F, Vinceti M, Generali L, Giannone ME, Mazzoleni E, Birnbaum LS, Consolo U. Filippini T (2023) Fluoride exposure and cognitive neurodevelopment: systematic review and dose-response meta-analysis. Environ Res 221: 115239. https://doi.org/10.1016/j.envres.2023.115239
- Nadei OV, Khvorova IA, Agalakova NI (2020) Cognitive decline of rats with chronic fluorosis is associated with alterations in hippocampal calpain signaling. Biol Trace Elem Res 197(2): 495–506. https://doi.org/10.1007/s12011-019-01993-z
- Надей ОВ, Иванова ТИ, Суфиева ДА, Агалакова НИ (2020) Морфологические изменения нейронов гиппокампа крыс как результат избыточного потребления фтора. Журн анат гистопатол 9(2): 53–60. [Nadei OV, Ivanova TI, Sufieva DA, Agalakova NI (2020) Morphological Changes of the Rat Hippocampal Neurons Following Excessive Fluoride Consumption. J Anat Histopathol 9(2): 53–60. (In Russ)]. https://doi.org/10.18499/2225-7357-2020-9-2-53-60
- Newton K, Strasser A, Kayagaki N, Dixit VM (2024) Cell death. Cell 187(2): 235–256. https://doi.org/10.1016/j.cell.2023.11.044
- Ai Y, Meng Y, Yan B, Zhou Q, Wang X (2024) The biochemical pathways of apoptotic, necroptotic, pyroptotic, and ferroptotic cell death. Mol Cell 84(1): 170–179. https://doi.org/10.1016/j.molcel.2023.11.040
- Gupta R, Ambasta RK, Pravir Kumar (2021) Autophagy and apoptosis cascade: which is more prominent in neuronal death? Cell Mol Life Sci 78(24): 8001–8047. https://doi.org/10.1007/s00018-021-04004-4
- Deng Z, Zhou X, Lu JH, Yue Z (2021) Autophagy deficiency in neurodevelopmental disorders. Cell Biosci 11(1): 214. https://doi.org/10.1186/s13578-021-00726-x
- Liénard C, Pintart A, Bomont P (2024) Neuronal autophagy: regulations and implications in health and disease. Cells 13(1): 103. https://doi.org/10.3390/cells13010103
- Agalakova NI, Gusev GP (2013) Excessive fluoride consumption leads to accelerated death of erythrocytes and anemia in rats. Biol Trace Elem Res 153(1–3): 340–349. https://doi.org/10.1007/s12011-013-9691-y
- Baselt RC (2004) Disposition of Toxic Drugs and Chemicals in Man. 7th ed. Biomedical Publications. Foster City. CA. 468–470. https://doi.org/10.1373/clinchem.2004.039271
- Nadei OV, Agalakova NI (2024) Optimal reference genes for RT-qPCR experiments in hippocampus and cortex of rats chronically exposed to excessive fluoride. Biol Trace Elem Res 202(1): 199–209. https://doi.org/10.1007/s12011-023-03646-8
- King LE, Hohorst L, Garcıá-Sáez AJ (2023) Expanding roles of BCL-2 proteins in apoptosis execution and beyond. J Cell Sci 136(22): jcs260790. https://doi.org/10.1242/jcs.260790
- Gong Q, Wang H, Zhou M, Zhou L, Wang R, Li Y (2024) B-cell lymphoma-2 family proteins in the crosshairs: Small molecule inhibitors and activators for cancer therapy. Med Res Rev 44(2): 707–737. https://doi.org/10.1002/med.21999
- Dixit VM (2023) The road to death: caspases, cleavage, and pores. Science Adv 9(17): eadi2011. https://doi.org/10.1126/sciadv.adi2011
- Sahoo G, Samal D, Khandayataray P, Murthy MK (2023) Review on caspases: key regulators of biological activities and apoptosis. Mol Neurobiol 60(10): 5805–5837. https://doi.org/10.1007/s12035-02-03433-5
- Ribeiro DA, Cardoso CM, Yujra VQ, De Barros Viana M, Aguiar O Jr, Pisani LP, Oshima CT (2017) Fluoride induces apoptosis in mammalian cells: in vitro and in vivo studies. Anticancer Res 37: 4767–4777. https://doi.org/10.21873/anticanres.11883
- Angwa LM, Nyadanu SD, Kanyugo AM, Adampah T, Pereira G (2023) Fluoride-induced apoptosis in non-skeletal tissues of experimental animals: A systematic review and meta-analysis. Heliyon 9(8): e18646. https://doi.org/10.1016/j.heliyon.2023.e18646
- Sun Y, Ke L, Zheng X, Li T, Ouyang W, Zhang Z (2017) Effects of different levels of calcium intake on brain cell apoptosis in fluorosis rat offspring and its molecular mechanisms. Biol Trace Elem Res 176(2): 355–366. https://doi.org/10.1007/s12011-016-0850-9
- Wei N, Dong YT, Deng J, Wang Y, Qi XL, Yu WF, Xiao Y, Zhou JJ, Guan ZZ (2018) Changed expressions of N-methyl-d-aspartate receptors in the brains of rats and primary neurons exposed to high level of fluoride. J Trace Elem Med Biol 45: 31–40. https://doi.org/10.1016/j.jtemb.2017.09.020
- Liu YJ, Guan ZZ, Gao Q, Pei JJ (2011) Increased level of apoptosis in rat brains and SH-SY5Y cells exposed to excessive fluoride – a mechanism connected with activating JNK phosphorylation. Toxicol Lett 204: 183–189. https://doi.org/10.1016/j.toxlet.2011.04.030
- Wang C, Liang C, Ma J, Manthari RK, Niu R, Wang J, Wang J, Zhang J (2018) Co-exposure to fluoride and sulfur dioxide on histological alteration and DNA damage in rat brain. J Biochem Mol Toxicol 32(2). https://doi.org/10.1002/jbt.22023
- Tang Y, Zhang J, Hu Z, Xu W, Xu P, Ma Y, Xing H, Niu Q (2023) PRKAA1 induces aberrant mitophagy in a PINK1/Parkin-dependent manner, contributing to fluoride-induced developmental neurotoxicity. Ecotoxicol Environ Saf 255: 114772. https://doi.org/10.1016/j.ecoenv.2023.114772
- Yan N, Liu Y, Liu S, Cao S, Wang F, Wang Z, Xi S (2016) Fluoride-induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain. Mol Neurobiol 53: 4449–4460. https://doi.org/10.1007/s12035-015-9380-2
- Liao Q, Zhang R, Wang X, Nian W, Ke L, Ouyang W, Zhang Z (2017) Effect of fluoride exposure on mRNA expression of cav1.2 and calcium signal pathway apoptosis regulators in PC12 cells. Environ Toxicol Pharmacol 54: 74–79. https://doi.org/10.1016/j.etap.2017.06.018
- Tu W, Zhang Q, Liu Y, Han L, Wang Q, Chen P, Zhang S, Wang A, Zhou X (2018) Fluoride induces apoptosis via inhibiting SIRT1 activity to activate mitochondrial p53 pathway in human neuroblastoma SH-SY5Y cells. Toxicol Appl Pharmacol 347: 60–69. https://doi.org/10.1016/j.taap.2018.03.030
- Chen J, Rodriguez AS, Morales MA, Fang X (2023) Autophagy modulation and its implications on glioblastoma treatment. Curr Issues Mol Biol 45(11): 8687–8703. https://doi.org/10.3390/cimb45110546
- Menon MB, Dhamija S (2018) Beclin 1 Phosphorylation – at the center of autophagy regulation. Front Cell Dev Biol 6: 137. https://doi.org/10.3389/fcell.2018.00137
- Rong Z, Zheng K, Chen J, Jin X (2022) Function and regulation of ULK1: From physiology to pathology. Gene 840: 146772. https://doi.org/10.1016/j.gene.2022.146772
- Prerna K, Dubey VK (2022) Beclin1-mediated interplay between autophagy and apoptosis: new understanding. Int J Biol Macromol 204: 258–273. https://doi.org/10.1016/j.ijbiomac.2022.02.005
- Niu Q, Chen J, Xia T, Li P, Zhou G, Xu C, Zhao Q, Dong L, Zhang S, Wang A (2018) Excessive ER stress and the resulting autophagic flux dysfunction contribute to fluoride-induced neurotoxicity. Environ Pollut 233: 889–899. https://doi.org/10.1016/j.envpol.2017.09.015
- Han X, Tang Y, Zhang Y, Zhang J, Hu Z, Xu W, Xu S, Niu Q (2022) Impaired V-ATPase leads to increased lysosomal pH, results in disrupted lysosomal degradation and autophagic flux blockage, contributes to fluoride-induced developmental neurotoxicity. Ecotoxicol Environ Saf 236: 113500. https://doi.org/10.1016/j.ecoenv.2022.113500
- Zhang L, Hu Z, Li Z, Lin Y (2024) Crosstalk among mitophagy, pyroptosis, ferroptosis, and necroptosis in central nervous system injuries. Neural Regen Res 19(8): 1660–1670. https://doi.org/10.4103/1673-5374.389361
Supplementary files
