The effect of ACTH/MSH N-terminal fragment analogs on the anxiety level, pain sensitivity and levels of neurotrophic factors BDNF and VEGF in primary neuronal cultures of rats
- Authors: Glazova N.Y.1,2, Manchenko D.М.1, Sebentsova Е.А.1,2, Andreeva L.А.3, Grivennikov I.А.2, Dolotov О.V.1,2, Myasoedov N.F.2, Levitskaya N.G.1,2
-
Affiliations:
- Lomonosov Moscow State University
- National Research Centre “Kurchatov Institute”
- Национальный исследовательский центр “Курчатовский институт”
- Issue: Vol 110, No 10 (2024)
- Pages: 1752-1766
- Section: EXPERIMENTAL ARTICLES
- URL: https://modernonco.orscience.ru/0869-8139/article/view/651737
- DOI: https://doi.org/10.31857/S0869813924100127
- EDN: https://elibrary.ru/VQIPEC
- ID: 651737
Cite item
Abstract
ACTH/MSH-like peptides (melanocortins) have a wide range of neurotropic effects, including effects on learning and memory processes, neuroprotection, emotional state and pain sensitivity. Present work is aimed to compare the effects of peptides, the structure of which includes a natural fragment of ACTH and a stabilizing tripeptide PGP. The peptides ACTH4-7PGP (Semax), ACTH6-9PGP и ACTH7-10PGP were used in the work. The effects of these peptides on the exploratory behavior, anxiety level and pain sensitivity of white rats, as well as on the protein levels of the neurotrophic factors BDNF (brain derived neurotrophic factor) and VEGF (vascular endothelial growth factor) in primary neuron cultures were studied. A comparative study of the effects of analogs of different ACTH/MSH fragments revealed both similarities and differences in their neurotropic activity. The peptides structure of which includes a sequence of ACTH4-7 or ACTH6-9 have nootropic, anxiolytic and analgesic activity, and also cause an increase in VEGF levels in the culture of hippocampal neurons. The peptide containing the ACTH7-10 sequence in the structure exhibits anxiolytic activity, increases exploratory behavior, does not affect pain sensitivity and has a stimulating effect on BDNF and VEGF levels in neuronal cultures. The data obtained indicate that different parts of the N-terminal region of the ACTH molecule are responsible for the manifestation of certain neurotropic effects of melanocortins. The results of the study can be used in the development of therapeutics based on natural melanocortins.
About the authors
N. Yu. Glazova
Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”
Email: nglevitskaya@gmail.com
Russian Federation, Moscow; Moscow
D. М. Manchenko
Lomonosov Moscow State University
Email: nglevitskaya@gmail.com
Russian Federation, Moscow
Е. А. Sebentsova
Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”
Email: nglevitskaya@gmail.com
Russian Federation, Moscow; Moscow
L. А. Andreeva
Национальный исследовательский центр “Курчатовский институт”
Email: nglevitskaya@gmail.com
Russian Federation
I. А. Grivennikov
National Research Centre “Kurchatov Institute”
Email: nglevitskaya@gmail.com
Russian Federation, Moscow
О. V. Dolotov
Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”
Email: nglevitskaya@gmail.com
Russian Federation, Moscow; Moscow
N. F. Myasoedov
National Research Centre “Kurchatov Institute”
Email: nglevitskaya@gmail.com
Russian Federation, Moscow
N. G. Levitskaya
Lomonosov Moscow State University; National Research Centre “Kurchatov Institute”
Author for correspondence.
Email: nglevitskaya@gmail.com
Russian Federation, Moscow; Moscow
References
- Feng W, Zhou Q, Chen X, Dai A, Cai X, Liu X, Zhao F, Chen Y, Ye C, Xu Y, Cong Z, Li H, Lin S, Yang D, Wang MW (2023) Structural insights into ligand recognition and subtype selectivity of the human melanocortin-3 and melanocortin-5 receptors. Cell Discov 9: 81. https://doi.org/10.1038/s41421-023-00586-4
- Bertolini A, Tacchi R, Vergoni AV (2009) Brain effects of melanocortins. Pharmacol Res 59: 13–47. https://doi.org/10.1016/j.phrs.2008.10.005
- Akimov MG, Fomina-Ageeva EV, Dudina PV, Andreeva LA, Myasoyedov NF, Bezuglov VV (2021) ACTH(6–9)PGP peptide protects SH-SY5Y cells from H2O2, tert-butyl Hydroperoxide, and cyanide cytotoxicity via stimulation of proliferation and induction of prosurvival-related genes. Molecules 26: 1878. https://doi.org/10.3390/molecules26071878
- Gebrie A (2023) The melanocortin receptor signaling system and its role in neuroprotection against neurodegeneration: Therapeutic insights. Ann N Y Acad Sci 1527: 30–41. https://doi.org/10.1111/nyas.15048
- Micioni Di Bonaventura E, Botticelli L, Del Bello F, Giorgioni G, Piergentili A, Quaglia W, Romano A, Gaetani S, Micioni Di Bonaventura MV, Cifani C (2022) Investigating the role of the central melanocortin system in stress and stress-related disorders. Pharmacol Res 185: 106521. https://doi.org/10.1016/j.phrs.2022.106521
- Markov DD, Dolotov OV, Grivennikov IA (2023) The Melanocortin System: A Promising Target for the Development of New Antidepressant Drugs. Int J Mol Sci 24: 6664. https://doi.org/10.3390/ijms24076664
- Ericson MD, Lensing CJ, Fleming KA, Schlasner KN, Doering SR, Haskell-Luevano C (2017) Bench-top to clinical therapies: A review of melanocortin ligands from 1954 to 2016 Biochim Biophys Acta Mol Basis Dis 1863: 2414–2435. https://doi.org/10.1016/j. bbadis.2017.03.020
- Mowlazadeh Haghighi S, Zhou Y, Dai J, Sawyer JR, Hruby VJ, Cai M (2018) Replacement of Arg with Nle and modified D-Phe in the core sequence of MSHs, Ac-His-D-Phe-Arg-Trp-NH2, leads to hMC1R selectivity and pigmentation. Eur J Med Chem 151: 815–823. https://doi.org/10.1016/j.ejmech.2018.04.021
- Todorovic A, Ericson MD, Palusak RD, Sorensen NB, Wood MS, Xiang Z, Haskell-Luevano C (2016) Comparative Functional Alanine Positional Scanning of the α-Melanocyte Stimulating Hormone and NDP-Melanocyte Stimulating Hormone Demonstrates Differential Structure-Activity Relationships at the Mouse Melanocortin Receptors. ACS Chem Neurosci 7: 984–994. https://doi.org/10.1021/acschemneuro.6b00098
- Strand FL (2000) David and Goliath – the slingshot that started the neuropeptide revolution. Eur J Pharmacol 405: 3–12. https://doi.org/10.1016/s0014-2999(00)00536-7
- Ivanova DM, Levitskaya NG, Andreeva LA, Kamenskii AA, Myasoedov NF (2007) Comparative study of analgesic potency of ACTH4-10 fragment and its analog semax. Bull Exp Biol Med 143: 5–8. https://doi.org/10.1007/s10517-007-0002-5
- Catania A (2008) Neuroprotective actions of melanocortins: a therapeutic opportunity. Trends Neurosci 31: 353–360. https://doi.org/10.1016/j.tins.2008.04.002
- Wolterink G, van Ree JM (1989) Behavioral and neurotrophic activity of ACTH-(7-16)NH2. Life Sci 45: 703–710. https://doi.org/10.1016/0024-3205(89)90089-1
- De Wied D (1999) Behavioral pharmacology of neuropeptides related to melanocortins and the neurohypophyseal hormones. Eur J Pharmacol 375: 1–11. https://doi.org/10.1016/s0014-2999(99)00339-8
- Smith JS, Lefkowitz RJ, Rajagopal S (2018) Biased signalling: from simple switches to allosteric microprocessors. Nat Rev Drug Discov 17: 243–260. https://doi.org/10.1038/nrd.2017.229
- Vyunova TV, Andreeva LA, Shevchenko KV, Glazova NY, Sebentsova EA, Levitskaya NG, Myasoedov NF (2023) Synthetic corticotropins and the GABA receptor system: Direct and delayed effects. Chem Biol & Drug Design 101: 1393–1405. https://doi.org/10.1111/cbdd.14221
- Singh A, Haslach EM, Haskell-Luevano C (2010) Structure-activity relationships (SAR) of melanocortin and agouti-related (AGRP) peptides. Adv Exp Med Biol 681: 1–18. https://doi.org/10.1007/978-1-4419-6354-3_1
- Ashmarin IP, Samonina GE, Lyapina LA, Kamenskii AA, Levitskaya NG, Grivennikov IA, Dolotov OV, Andreeva LA, Myasoedov NF (2005) Natural and hybrid (“chimeric”) stable regulatory glyproline peptides. Pathophysiology 11: 179–185. https://doi.org/10.1016/j. pathophys.2004.10.001
- Kolomin T, Shadrina M, Slominsky P, Limborska S, Myasoedov N (2013) A new generation of drugs: Synthetic peptides based on natural regulatory peptides. Neurosci and Med 4: 223–252. https://doi.org/10.4236/nm.2013.44035
- Levitskaya NG, Glazova NYu, Sebentsova EA, Manchenko DM, Vilensky DA, Andreeva LA, Kamensky AA, Myasoedov NF (2008) Investigation of the Spectrum of Physiological Activities of the Heptapeptide Semax, an ACTH 4–10 Analogue. Neurochem J 2: 95–101. https://doi.org/10.1007/s11710-008-1018-0
- Levitskaya NG, Vilenskii DA, Sebentsova EA, Andreeva LA, Kamensky AA, Myasoedov NF (2010) Influence of semax on the emotional state of white rats in the norm and against the background of cholecystokinin-tetrapeptide action. Biol Bull 37: 186–192. https://doi.org/10.1134/S1062359010020147
- Ivanova DM, Vilenskii DA, Levitskaya NG, Andreeva LA, Alfeeva LYu, Kamenskii AA, Myasoedov NF (2006) Study of the relationship between analgesic activity and structure of synthetic melanocortin analogs. Biol Bull 33: 162–166. https://doi.org/10.1134/S1062359006020105
- Shadrina MI, Dolotov OV, Grivennikov IA, Slominsky PA, Andreeva LA, Inozemtseva LS, Limborska SA, Myasoedov NF (2001) Rapid induction of neurotrophin mRNAs in rat glial cell cultures by Semax, an adrenocorticotropic hormone analog. Neurosci Lett 308: 115–118. https://doi.org/10.1016/s0304-3940(01)01994-2
- Dolotov OV, Karpenko EA, Inozemtseva LS, Seredenina TS, Levitskaya NG, Rozyczka J, Dubynina EV, Novosadova EV, Andreeva LA, Alfeeva LY, Kamensky AA, Grivennikov IA, Myasoedov NF, Engele J (2006) Semax, an analog of ACTH(4-10) with cognitive effects, regulates BDNF and trkB expression in the rat hippocampus. Brain Res 1117: 54–60. https://doi.org/10.1016/j.brainres.2006.07.108
- Левицкая НГ, Глазова НЮ, Себенцова ЕА, Манченко ДМ, Андреева ЛА, Каменский АА, Мясоедов НФ (2019) Ноотропные и анксиолитические эффекты гептапептида АКТГ6-9Pro-Gly-Pro. Рос физиол журн им ИМ Сеченова 105: 761–770. [Levitskaya NG, Glazova NY, Sebentsova EA, Manchenko DM, Andreeva LA, Kamensky AA, Myasoedov NF (2019) Nootropic and anxiolytic effects of heptapeptide ACTH6-9Pro-Gly-Pro. Russ J Physiol 105: 761–770. (In Russ)]. https://doi.org/10.1134/S0869813919060049
- Filippenkov IB, Stavchansky VV, Glazova NY, Sebentsova EA, Remizova JA, Valieva LV, Levitskaya NG, Myasoedov NF, Limborska SA, Dergunova LV (2021) Antistress action of melanocortin derivatives associated with correction of gene expression patterns in the hippocampus of male rats following acute stress. Int J Mol Sci 22: 10054. https://doi.org/10.3390/ijms221810054
- Vorvul AO, Bobyntsev II, Medvedeva OA, Mukhina AY, Svishcheva MV, Azarova IE, Andreeva LA, Myasoedov NF (2022) ACTH(6-9)-Pro-Gly-Pro ameliorates anxietylike and depressive-like behaviour and gut mucosal microbiota composition in rats under conditions of chronic restraint stress. Neuropeptides 93: 102247. https://doi.org/10.1016/j. npep.2022.102247
- Glazova NYu, Atanov MS, Pyzgareva AV, Andreeva LA, Manchenko DM, Markov DD, Inozemtseva LS, Dolotov OV, Levitskaya NG, Kamensky AA, Grivennikov IA, Myasoedov NF (2011) Neurotropic Activity of ACTH7–10PGP, an Analog of an ACTH Fragment. Dokl Biol Sci 440: 270–274. https://doi.org/10.1134/S0012496611050140
- Licht T, Goshen I, Avital A, Kreisel T, Zubedat S, Eavri R, Segal M, Yirmiya R, Keshet E (2011) Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci U S A 108: 5081–5086. https://doi.org/10.1073/pnas.1007640108
- De Rossi P, Harde E, Dupuis JP, Martin L, Chounlamountri N, Bardin M, Watrin C, Benetollo C, Pernet-Gallay K, Luhmann HJ, Honnorat J, Malleret G, Groc L, Acker-Palmer A, Salin PA, Meissirel C (2016) A critical role for VEGF and VEGFR2 in NMDA receptor synaptic function and fear-related behavior. Mol Psychiatry 21: 1768–1780. https://doi.org/10.1038/mp.2015.195
- Dubynina EV, Inozemtseva LS, Markov DD, Yatsenko KA, Dolotov OV, Grivennikov IA (2009) Alpha-melanocyte-stimulating hormone increases the expression of vascular endothelial growth factor in rat hippocampal astrocytes in vitro. Neurochem J 3: 267–271. https://doi.org/10.1134/S1819712409040059
- Bottenstein JE, Sato GH (1979) Growth of a rat neuroblastoma cell line in serum-free supplemented medium. Proc Natl Acad Sci U S A 76: 514–517. https://doi.org/10.1073/pnas.76.1.514
- Pollock GS, Vernon E, Forbes ME, Yan Q, Ma YT, Hsieh T, Robichon R, Frost DO, Johnson JE (2001) Effects of early visual experience and diurnal rhythms on BDNF mRNA and protein levels in the visual system, hippocampus, and cerebellum. J Neurosci 21: 3923–3931. https://doi.org/10.1523/JNEUROSCI.21-11-03923.2001
- Manchenko DM, Glazova NY, Levitskaya N, Andreeva LA, Kamenskii AA, Myasoedov NF (2012) The Nootropic and Analgesic Effects of Semax Given via Different Routes. Neurosci Behav Physiol 42: 264–270. doi: 10.1007/s11055-012-9562-6
- Pettersen VL, Zapata-Sudo G, Raimundo JM, Trachez MM, Sudo RT (2009) The synergistic interaction between morphine and maprotiline after intrathecal injection in rats. Anesth Analg 109: 1312–1327. https://doi.org/10.1213/ane.0b013e3181b16ff5
- Pereira LO, da Cunha IC, Neto JM, Paschoalini MA, Faria MS (2005) The gradient of luminosity between open/enclosed arms, and not the absolute level of Lux, predicts the behaviour of rats in the plus maze. Behav Brain Res 159: 55–61. https://doi.org/10.1016/j.bbr.2004.10.002
- Violle N, Balandras F, Le Roux Y, Desor D, Schroeder H (2009) Variations in illumination, closed wall transparency and/or extramaze space influence both baseline anxiety and response to diazepam in the rat elevated plus-maze. Behav Brain Res 203: 35–42. https://doi.org/10.1016/j.bbr.2009.04.015
- Padovan CM, Guimarães FS (2000) Restraint-induced hypoactivity in an elevated plus-maze. Braz J Med Biol Res 33: 79–83. https://doi.org/10.1590/s0100-879x2000000100011
- Walker JM, Berntson GG, Sandman CA, Kastin AG, Akil H (1981) Induction of Analgesia by Central Administration of ORG 2766, An Analog of ACTH 4-9. Eur J Pharmacol 69: 71–79. https://doi.org/10.1016/0014-2999(81)90603-8
- Huber R, Tononi G, Cirelli C (2007) Exploratory behavior, cortical BDNF expression, and sleep homeostasis. Sleep 30: 129–139. https://doi.org/10.1093/sleep/30.2.129
- Zhu SW, Codita A, Bogdanovic N, Hjerling-Leffler J, Ernfors P, Winblad B, Dickins DW, Mohammed AH (2009) Influence of environmental manipulation on exploratory behaviour in male BDNF knockout mice. Behav Brain Res 197: 339–346. https://doi.org/10.1016/j.bbr.2008.09.032
- Dayi A, Cetin F, Sisman AR, Aksu I, Tas A, Gönenc S, Uysal N (2015) The effects of oxytocin on cognitive defect caused by chronic restraint stress applied to adolescent rats and on hippocampal VEGF and BDNF levels. Med Sci Monit 21: 69–75. https://doi.org/10.12659/MSM.893159
- Nicoletti JN, Lenzer J, Salerni EA, Shah SK, Elkady A, Khalid S, Quinteros D, Rotella F, Betancourth D, Croll SD (2010) Vascular endothelial growth factor attenuates status epilepticus-induced behavioral impairments in rats. Epilepsy Behav 19: 272–277. https://doi.org/10.1016/j.yebeh.2010.07.011
Supplementary files
