Влияние внеклеточного ацидоза на функциональный вклад Katp и TASK-1 калиевых каналов в регуляцию сосудистого тонуса в раннем постнатальном онтогенезе
- Авторы: Швецова А.А.1, Борзых А.А.1,2, Гайнуллина Д.К.1
-
Учреждения:
- Московский государственный университет имени М.В. Ломоносова
- Институт медико-биологических проблем РАН
- Выпуск: Том 110, № 1 (2024)
- Страницы: 47-57
- Раздел: ЭКСПЕРИМЕНТАЛЬНЫЕ СТАТЬИ
- URL: https://modernonco.orscience.ru/0869-8139/article/view/651681
- DOI: https://doi.org/10.31857/S0869813924010039
- EDN: https://elibrary.ru/WUGMWT
- ID: 651681
Цитировать
Аннотация
Активность многих белков и, как следствие, механизмов регуляции тонуса сосудов зависит от рН. Снижение рН (при некомпенсированном ацидозе), как правило, вызывает расслабление сосудов, что достаточно подробно изучено для взрослого половозрелого организма. Однако влияние ацидоза на механизмы регуляции сосудистого тонуса в раннем постнатальном периоде остается практически неисследованным. Целью данной работы было исследование влияния внеклеточного метаболического ацидоза на функциональный вклад калиевых каналов KATP и TASK-1 в регуляцию сосудистого тонуса в раннем постнатальном периоде. В работе моделировали некомпенсированный внеклеточный метаболический ацидоз (рН 6.8, эквимолярная замена NaHCO3 на NaCl в растворе) и исследовали сократительные реакции подкожной артерии у крыс в возрасте 3–4 месяцев и крысят в возрасте 12–15 дней в изометрическом режиме. Оказалось, что сокращение артерий в ответ на действие агониста α1-адренорецепторов метоксамина при рН 6.8 снижено по сравнению с нормальным рН 7.4 как у крыс в возрасте 3–4 месяцев, так и у 12–15-дневных животных. Блокатор KATP-каналов глибенкламид не приводил к изменению реакций артерий на метоксамин ни при рН 7.4, ни при рН 6.8 ни в одной из возрастных групп. Блокатор TASK-1-каналов AVE1231 не изменял сократительные реакции артерий ни при одном из рН у крыс в возрасте 3–4 месяцев. Однако у 12–15-дневных крысят прирост сократительных ответов на метоксамин под влиянием AVE1231 был меньше при рН 6.8, чем при рН 7.4. Таким образом, результаты данной работы демонстрируют, что ацидоз уменьшает сократительную активность артерий животных в возрасте 3–4 месяцев и животных в период раннего постнатального онтогенеза, при этом у последних антиконстрикторное влияние каналов TASK-1 снижается, а KATP-каналы не оказывают влияния на регуляцию тонуса сосудов ни при нормальном, ни при кислом значении рН ни в одной из возрастных групп.
Полный текст

Об авторах
А. А. Швецова
Московский государственный университет имени М.В. Ломоносова
Автор, ответственный за переписку.
Email: Dina.Gaynullina@gmail.com
Россия, Москва
А. А. Борзых
Московский государственный университет имени М.В. Ломоносова; Институт медико-биологических проблем РАН
Email: Dina.Gaynullina@gmail.com
Россия, Москва; Москва
Д. К. Гайнуллина
Московский государственный университет имени М.В. Ломоносова
Email: Dina.Gaynullina@gmail.com
Россия, Москва
Список литературы
- Berend K, de Vries APJ, Gans ROB (2014) Physiological Approach to Assessment of Acid–Base Disturbances. N Engl J Med 371: 1434–1445. https://doi.org/10.1056/NEJMRA1003327/SUPPL_FILE/NEJMRA1003327_DISCLOSURES.PDF
- Гайнуллина ДК, Швецова АА, Тарасова ОС (2022) Механизмы влияния ацидоза на тонус кровеносных сосудов. Авиакосмич экологич мед 56: 38–45. [Gainullina DK, Shvetso- va AA, Tarasova OS (2022) Mechanisms of the influence of acidosis on the tone of blood vessels. Aerospace Environment Med 56: 38–45. (In Russ)]. https://doi.org/10.21687/0233-528x-2022-56-5-38-45
- Gaynullina DK, Tarasova OS, Shvetsova AA, Borzykh AA, Schubert R (2022) The Effects of Acidosis on eNOS in the Systemic Vasculature: A Focus on Early Postnatal Ontogenesis. Int J Mol Sci 23: 5987. https://doi.org/10.3390/ijms23115987
- Boedtkjer E, Aalkjaer C (2012) Intracellular pH in the resistance vasculature: regulation and functional implications. J Vasc Res 49: 479–496. https://doi.org/10.1159/000341235
- Boedtkjer E (2018) Acid–base regulation and sensing: Accelerators and brakes in metabolic regulation of cerebrovascular tone. J Cereb Blood Flow Metab 38: 588–602. https://doi.org/10.1177/0271678X17733868
- Remzső G, Németh J, Varga V, Kovács V, Tóth-Szűki V, Kaila K, Voipio J, Domoki F (2020) Brain interstitial pH changes in the subacute phase of hypoxic-ischemic encephalopathy in newborn pigs. PLoS One 15: e0233851. https://doi.org/10.1371/journal.pone.0233851
- Shvetsova AA, Gaynullina DK, Tarasova OS, Schubert R (2019) Negative feedback regulation of vasocontraction by potassium channels in 10- to 15-day-old rats: Dominating role of Kv7 channels. Acta Physiol 225: e13176. https://doi.org/10.1111/apha.13176
- Wang X, Wu J, Li L, Chen F, Wang R, Jiang C (2003) Hypercapnic acidosis activates KATP channels in vascular smooth muscles. Circ Res 92: 1225–1232. https://doi.org/10.1161/01.RES.0000075601.95738.6D
- Celotto AC, Restini CBA, Capellini VK, Bendhack LM, Evora PRB (2011) Acidosis induces relaxation mediated by nitric oxide and potassium channels in rat thoracic aorta. Eur J Pharmacol 656: 88–93. https://doi.org/10.1016/j.ejphar.2011.01.053
- Lindauer U, Vogt J, Schuh-Hofer S, Dreier JP, Dirnagl U (2003) Cerebrovascular Vasodilation to Extraluminal Acidosis Occurs via Combined Activation of ATP-Sensitive and Ca 2+-Activated Potassium Channels. J Cereb Blood Flow Metab 23(10): 1227–1238. https://doi.org/10.1097/01.WCB.0000088764.02615.B7
- Rohra DK, Sharif HM, Zubairi HS, Sarfraz K, Ghayur MN, Gilani AH (2005) Acidosis-induced relaxation of human internal mammary artery is due to activation of ATP-sensitive potassium channels. Eur J Pharmacol 514: 175–181. https://doi.org/10.1016/j.ejphar.2005.02.041
- Phillis JW, Song D, O’Regan MH (2000) Mechanisms involved in coronary artery dilatation during respiratory acidosis in the isolated perfused rat heart. Basic Res Cardiol 95: 93–97. https://doi.org/10.1007/s003950050169
- Gurney A, Manoury B (2009) Two-pore potassium channels in the cardiovascular system. Eur Biophys J 38: 305–318. https://doi.org/10.1007/s00249-008-0326-8
- Goldstein SAN, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-p-domain subunits. Nat Rev Neurosci 23(2): 175–184. https://doi.org/10.1038/35058574
- Olschewski A, Li Y, Tang B, Hanze J, Eul B, Bohle RM, Wilhelm J, Morty RE, Brau ME, Weir EK, Kwapiszewska G, Klepetko W, Seeger W, Olschewski H (2006) Impact of TASK-1 in human pulmonary artery smooth muscle cells. Circ Res 98: 1072–1080. https://doi.org/10.1161/01.RES.0000219677.12988.e9
- Antigny F, Hautefort A, Meloche J, Belacel-Ouari M, Manoury B, Rucker-Martin C, Péchoux C, Potus F, Nadeau V, Tremblay E, Ruffenach G, Bourgeois A, Dorfmüller P, Breuils-Bonnet S, Fadel E, Ranchoux B, Jourdon P, Girerd B, Montani D, Provencher S, Bonnet S, Simonneau G, Humbert M, Perros F (2016) Potassium channel subfamily K member 3 (KCNK3) contributes to the development of pulmonary arterial hypertension. Circulation 133: 1371–1385. https://doi.org/10.1161/CIRCULATIONAHA.115.020951
- Gardener MJ, Johnson IT, Burnham MP, Edwards G, Heagerty AM, Weston AH (2004) Functional evidence of a role for two-pore domain potassium channels in rat mesenteric and pulmonary arteries. Br J Pharmacol 142: 192–202. https://doi.org/10.1038/sj.bjp.0705691
- Shvetsova AA, Gaynullina DK, Schmidt N, Bugert P, Lukoshkova E V, Tarasova OS, Schubert R (2020) TASK-1 channel blockade by AVE1231 increases vasocontractile responses and BP in 1- to 2-week-old but not adult rats. Br J Pharmacol 177: 5148–5162. https://doi.org/10.1111/bph.15249
- Stulcova B (1977) Postnatal development of cardiac output distribution measured by radioactive microspheres in rats. Neonatology 32: 119–124.
- Mulvany MJ, Halpern W (1977) Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41: 19–26. https://doi.org/10.1161/01.RES.41.1.19
- Yartsev VN, Karachentseva OV, Dvoretsky DP (2002) Effect of pH changes on reactivity of rat mesenteric artery segments at different magnitude of stretch. Acta Physiol Scand 174: 1–7. https://doi.org/10.1046/j.1365-201x.2002.00923.x
- Mohanty I, Suklabaidya S, Parija SC (2016) Acidosis reduces the function and expression of α1D-adrenoceptor in superior mesenteric artery of capra hircus. Int J Pharmacol 48: 399–406. https://doi.org/10.4103/0253-7613.186199
- Aoyama Y, Ueda K, Setogawa A, Kawai Y (1999) Effects of pH on contraction and Ca2+ mobilization in vascular smooth muscles of the rabbit basilar artery. Jpn J Physiol 49: 55–62.
- Akanji O, Weinzierl N, Schubert R, Schilling L (2019) Acid sensing ion channels in rat cerebral arteries: Probing the expression pattern and vasomotor activity. Life Sci 227: 193–200. https://doi.org/10.1016/j.lfs.2019.04.054
- Aleksandrowicz M, Kozniewska E (2020) Compromised regulation of the rat brain parenchymal arterioles in vasopressin-associated acute hyponatremia. Microcirculation 27: 1–7. https://doi.org/10.1111/micc.12644
- Hessellund A, Aalkjaer C, Bek T (2006) Effect of acidosis on isolated porcine retinal vessels. Curr Eye Res 31: 427–434. https://doi.org/10.1080/02713680600681236
- Ives SJ, Andtbacka RHI, Noyes RD, Morgan RG, Gifford JR, Park SY, Symons JD, Richard- son RS (2013) α1-Adrenergic responsiveness in human skeletal muscle feed arteries: The impact of reducing extracellular pH. Exp Physiol 98: 256–267. https://doi.org/10.1113/expphysiol.2012.066613
- Nakanishi T, Gu H, Momma K (1997) Developmental changes in the effect of acidosis on contraction, intracellular pH, and calcium in the rabbit mesenteric small artery. Pediatr Res 42: 750–757. https://doi.org/10.1203/00006450-199712000-00006
- Nakanishi T, Gu H, Momma K (1997) Effect of acidosis on contraction, intracellular pH, and calcium in the newborn and adult rabbit aorta. Heart Vessels 12: 207–215. https://doi.org/10.1007/BF02766785
- Lotshaw DP (2007) Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ hannels. Cell Biochem Biophys 47(2): 209–256. https://doi.org/10.1007/s12013-007-0007-8
- Ma L, Zhang X, Zhou M, Chen H (2012) Acid-sensitive TWIK and TASK Two-pore Domain Potassium Channels Change Ion Selectivity and Become Permeable to Sodium in Extracellular Acidification. J Biol Chem 287(44): 37145–37153. https://doi.org/10.1074/jbc.M112.398164
- Mochalov SV, Tarasova NV, Kudryashova TV, Gaynullina DK, Kalenchuk VU, Borovik AS, Vorotnikov AV, Tarasova OS, Schubert R (2018) Higher Ca2+-sensitivity of arterial contraction in 1-week-old rats is due to a greater Rho-kinase activity. Acta Physiol 223: 1–15. https://doi.org/10.1111/apha.13044
- Akopov SE, Zhang L, Pearce WJ (1998) Regulation of Ca2+ sensitization by PKC and rho proteins in ovine cerebral arteries: Effects of artery size and age. Am J Physiol - Hear Circ Physiol 275: 930–939. https://doi.org/10.1152/ajpheart.1998.275.3.h930
- Boedtkjer E, Praetorius J, Matchkov VV, Stankevicius E, Mogensen S, Füchtbauer AC, Simon- sen U, Füchtbauer EM, Aalkjaer C (2011) Disruption of Na+, HCO2- cotransporter NBCn1 (slc4a7) Inhibits no-mediated vasorelaxation, smooth muscle Ca2+ Sensitivity, and hypertension development in mice. Circulation 124: 1819–1829. https://doi.org/10.1161/CIRCULATIONAHA.110.015974
Дополнительные файлы
