Zebrafish аs а Promising Experimental Model of Traumatic Brain Injury
- 作者: Shevlyakov A.D.1,2, Ilyin N.P.1,3, Galstyan D.S.1,3,4, Ikrin A.N.5, Kolesnikova T.O.5, Apukhtin K.V.5, Kotova M.M.5, Nikitin V.S.5, Amstislavskaya T.G.6, Petersen E.V.7, Kalueff A.V.1,2,3,4,6
-
隶属关系:
- World-class Scientific Center “Center for Personalized Medicine”, Almazov National Medical Research Center, Ministry of Healthcare
- Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology
- Institute of Translational Biomedicine, St. Petersburg State University
- Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare
- Neurobiology Program and Immunobiology and Biomedicine Program, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology
- Research Institute of Neuroscience and Medicine
- Moscow Institute of Physics and Technology
- 期: 卷 110, 编号 3 (2024)
- 页面: 326-348
- 栏目: REVIEW
- URL: https://modernonco.orscience.ru/0869-8139/article/view/651659
- DOI: https://doi.org/10.31857/S0869813924030024
- EDN: https://elibrary.ru/CQAQXX
- ID: 651659
如何引用文章
详细
Traumatic brain injury (TBI) involves various types of physical injuries to brain tissue. TBI is a highly heterogeneous clinical condition, whose symptoms include cognitive, motor and emotional deficits, as well as neurodegeneration and neuroinflammation. Animal modeling plays a key role in studying TBI, expanding our knowledge of TBI and its temporal dynamics, and to develop new drugs for its treatment. Recently, the use of the bony zebrafish (Danio rerio) as an aquatic model organism has attracted particular interest in translational neurobiology. Zebrafish are presently second (after mice) laboratory animal species most used in biomedicine. Here, we discuss the prospects of using zebrafish to model TBI, as well as problems and new directions of research in this area. We also emphasize the importance of zebrafish as a highly translational model for studying the molecular mechanisms and neurological disorders in TBI, as well as screening for potential therapeutic agents.
全文:

作者简介
A. Shevlyakov
World-class Scientific Center “Center for Personalized Medicine”, Almazov National Medical Research Center, Ministry of Healthcare; Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program and Immunobiology and Biomedicine Program
俄罗斯联邦, St. Petersburg; Federal Territory SiriusN. Ilyin
World-class Scientific Center “Center for Personalized Medicine”, Almazov National Medical Research Center, Ministry of Healthcare; Institute of Translational Biomedicine, St. Petersburg State University
Email: avkalueff@gmail.com
俄罗斯联邦, St. Petersburg; St. Petersburg
D. Galstyan
World-class Scientific Center “Center for Personalized Medicine”, Almazov National Medical Research Center, Ministry of Healthcare; Institute of Translational Biomedicine, St. Petersburg State University; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare
Email: avkalueff@gmail.com
俄罗斯联邦, St. Petersburg; St. Petersburg; St. Petersburg
A. Ikrin
Neurobiology Program and Immunobiology and Biomedicine Program, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program and Immunobiology and Biomedicine Program
俄罗斯联邦, Federal Territory SiriusT. Kolesnikova
Neurobiology Program and Immunobiology and Biomedicine Program, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program and Immunobiology and Biomedicine Program
俄罗斯联邦, Federal Territory SiriusK. Apukhtin
Neurobiology Program and Immunobiology and Biomedicine Program, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program and Immunobiology and Biomedicine Program
俄罗斯联邦, Federal Territory SiriusM. Kotova
Neurobiology Program and Immunobiology and Biomedicine Program, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program and Immunobiology and Biomedicine Program
俄罗斯联邦, Federal Territory SiriusV. Nikitin
Neurobiology Program and Immunobiology and Biomedicine Program, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology
Email: avkalueff@gmail.com
Neurobiology Program and Immunobiology and Biomedicine Program
俄罗斯联邦, Federal Territory SiriusT. Amstislavskaya
Research Institute of Neuroscience and Medicine
Email: avkalueff@gmail.com
俄罗斯联邦, Novosibirsk
E. Petersen
Moscow Institute of Physics and Technology
Email: avkalueff@gmail.com
Laboratory of Molecular Biological and Neurobiological Problems and Bioscreening
俄罗斯联邦, DolgoprudnyA. Kalueff
World-class Scientific Center “Center for Personalized Medicine”, Almazov National Medical Research Center, Ministry of Healthcare; Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology; Institute of Translational Biomedicine, St. Petersburg State University; Institute of Experimental Medicine, Almazov National Medical Research Center, Ministry of Healthcare; Research Institute of Neuroscience and Medicine
编辑信件的主要联系方式.
Email: avkalueff@gmail.com
Neurobiology Program and Immunobiology and Biomedicine Program
俄罗斯联邦, St. Petersburg; Federal Territory Sirius; St. Petersburg; St. Petersburg; Novosibirsk参考
- Ильин НП, Галстян ДС, Демин КА, Калуев АВ (2023) Поведенческие, геномные и нейрохимические нарушения в модели нейротравмы на взрослых рыбах зебраданио (Danio rerio). Рос физиол журн им ИМ Сеченова 109(11): 1699–1717. [Ilyin NP, Galstyan DS, Demin KA, Kalueff AV (2023) Behavioral, genomic and neurochemical disorders in the neurotrauma model on adult zebrafish (Danio rerio). Russ J Physiol 109(11): 1699–1717. (In Russ)]. https://doi.org/10.31857/S0869813923110043
- Hartings JA, Bullock MR, Okonkwo DO, Murray LS, Murray GD, Fabricius M, Maas AI, Woitzi J, Sakowitz O, Mathern B, Roozenbeek B, Lingsma H, Dreier JP, Puccio AM, Shutter LA, Pahl C, Strong AJ (2011) Spreading depolarisations and outcome after traumatic brain injury: A prospective observational study. Lancet Neurol 10(12): 1058–1064. https://doi.org/10.1016/S1474-4422(11)70243-5
- Szczygielski J, Mautes A, Steudel WI, Falkai P, Bayer TA, Wirths O (2005) Traumatic brain injury: Cause or risk of Alzheimer’s disease? A review of experimental studies. J Neural Transmis 112(11): 1547–1564. https://doi.org/10.1007/s00702-005-0326-0
- Young JS, Hobbs JG, Bailes JE (2016) The impact of traumatic brain injury on the aging brain. Current Psych Rep 18(9): 1–10. https://doi.org/10.1007/s11920-016-0719-9
- Krishnamurthy K, Laskowitz DT (2015) Cellular and molecular mechanisms of secondary neuronal injury following traumatic brain injury. Transl Res Traumat Brain Injury 97–126. https://doi.org/10.1201/b18959-6
- Khatri N, Thakur M, Pareek V, Kumar S, Sharma S, Datusalia AK (2018) Oxidative stress: Major threat in traumatic brain injury. CNS Neurol Disord Drug Targets 17(9): 689–695. https://doi.org/10.2174/1871527317666180627120501
- Zheng R, Lee K, Qi Z, Wang Z, Xu Z, Wu X, Mao Y (2022) Neuroinflammation following traumatic brain injury: Take it seriously or not. Front Immunol 13: 855701. https://doi.org/10.3389/fimmu.2022.855701
- Le Prieult F, Thal SC, Engelhard K, Imbrosci B, Mittmann T (2017) Acute cortical transhemispheric diaschisis after unilateral traumatic brain injury. J Neurotrauma 34(5): 1097–1110. https://doi.org/10.1089/neu.2016.4575
- Parellada E, Gassó P (2021) Glutamate and microglia activation as a driver of dendritic apoptosis: a core pathophysiological mechanism to understand schizophrenia. Translat Psychiatry 11(1): 271. https://doi.org/10.1038/s41398-021-01385-9
- Baracaldo-Santamaría D, Ariza-Salamanca DF, Corrales-Hernández MG, Pachón-Londoño MJ, Hernandez-Duarte I, Calderon-Ospina CA (2022) Revisiting excitotoxicity in traumatic brain injury: from bench to bedside. Pharmaceutics 14(1): 152. https://doi.org/10.3390/pharmaceutics14010152
- Chamoun R, Suki D, Gopinath SP, Goodman JC, Robertson C (2010) Role of extracellular glutamate measured by cerebral microdialysis in severe traumatic brain injury: Clinical article. J Neurosurg 113(3): 564–570. https://doi.org/10.3171/2009.12.JNS09689
- Ladak AA, Enam SA, Ibrahim MT (2019) A review of the molecular mechanisms of traumatic brain injury. World Neurosurg 131: 126–132. https://doi.org/10.1016/j.wneu.2019.07.039
- Hong Z, Xinding Z, Tianlin Z, Liren C (2001) Excitatory amino acids in cerebrospinal fluid of patients with acute head injuries. Clin Chem 47(8): 1458–1462. https://doi.org/10.1093/clinchem/47.8.1458
- Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24(1–3): 107–130. https://doi.org/10.1385/MN:24:1-3:10
- Hu Y, Mai W, Chen L, Cao K, Zhang B, Zhang Z, Liu Y, Lou H, Duan S, Gao Z (2020) Mtor-mediated metabolic reprogramming shapes distinct microglia functions in response to lipopolysaccharide and atp. Glia 68(5): 1031–1045. https://doi.org/10.1002/glia.23760
- Hinzman JM, Wilson JA, Mazzeo AT, Bullock MR, Hartings JA (2016) Excitotoxicity and metabolic crisis are associated with spreading depolarizations in severe traumatic brain injury patients. J Neurotrauma 33(19): 1775–1783. https://doi.org/10.1089/neu.2015.4226
- Balu R (2014) Inflammation and immune system activation after traumatic brain injury. Current Neurol Neurosci Rep 14(10): 1–8. https://doi.org/10.1007/s11910-014-0484-2
- Lehnardt S (2010) Innate immunity and neuroinflammation in the CNS: The role of microglia in Toll-like receptor-mediated neuronal injury. Glia 58(3): 253–263. https://doi.org/10.1002/glia.20928
- Karve IP, Taylor JM, Crack PJ (2016) The contribution of astrocytes and microglia to traumatic brain injury. Br J Pharmacol 173(4): 692–702. https://doi.org/10.1111/bph.13125
- Colonna M, Butovsky O (2017) Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol 35(1): 441–468. https://doi.org/10.1146/annurev-immunol-051116-052358
- Xu H, Wang Z, Li J, Wu H, Peng Y, Fan L, Chen J, Gu C, Yan F, Wang L, Chen G (2017) The polarization states of microglia in tbi: A new paradigm for pharmacological intervention. Neural Plasticity 2017: 5405104. https://doi.org/10.1155/2017/5405104
- Barres BA (2008) The mystery and magic of glia: A perspective on their roles in health and disease. Neuron 60(3): 430–440. https://doi.org/10.1016/j.neuron.2008.10.013
- Rothstein JD, Dykes-Hoberg M, Pardo CA, Bristol LA, Jin L, Kuncl RW, Kanai Y, Hediger MA, Wang Y, Schielke JP, Welty DF (1996) Knockout of glutamate transporters reveals a major role for astroglial transport in excitotoxicity and clearance of glutamate. Neuron 16(3): 675–686. https://doi.org/10.1016/S0896-6273(00)80086-0
- Christian CA, Huguenard JR (2013) Astrocytes potentiate GABAergic transmission in the thalamic reticular nucleus via endozepine signaling. Proc Natl Acad Sci U S A 110(50): 20278–20283. https://doi.org/10.1073/pnas.1318031110
- Burda JE, Bernstein AM, Sofroniew MV (2016) Astrocyte roles in traumatic brain injury. Exp Neurol 275: 305–315. https://doi.org/10.1016/j.expneurol.2015.03.020
- Landeghem FKHV, Weiss T, Oehmichen M, Deimling AV (2006) Decreased expression of glutamate transporters in astrocytes after human traumatic brain injury. J Neurotrauma 23(10): 1518–1528. https://doi.org/10.1089/neu.2006.23.1518
- Das M, Mohapatra S, Mohapatra SS (2012) New perspectives on central and peripheral immune responses to acute traumatic brain injury. J Neuroinflammat 9(1): 1–12. https://doi.org/10.1186/1742-2094-9-236
- Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, McIntosh TK (1996) Experimental brain injury induces differential expression of tumor necrosis factor-α mRNA in the CNS. Mol Brain Res 36(2): 287–291. https://doi.org/10.1016/0169-328X(95)00274-V
- Hang CH, Shi JX, Li JS, Li WQ, Wu W (2005) Expressions of intestinal NF-κB, TNF-α, and IL-6 following traumatic brain injury in rats. J Surg Res 123(2): 188–193. https://doi.org/10.1016/j.jss.2004.08.002
- Lu KT, Wang YW, Yang JT, Yang YL, Chen HI (2005) Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J Neurotrauma 22(8): 885–895. https://doi.org/10.1089/neu.2005.22.885
- Wu N, Sun X, Zhou C, Yan J, Cheng C (2023) Neuroblasts migration under control of reactive astrocyte-derived BDNF: A promising therapy in late neurogenesis after traumatic brain injury. Stem Cell Res & Therapy 14(1): 1–14. https://doi.org/10.1186/s13287-022-03232-0
- Vercammen D, Beyaert R, Denecker G, Goossens V, Van Loo G, Declercq W, Grooten J, Fiers W, Vandenabeele P (1998) Inhibition of caspases increases the sensitivity of l929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187(9): 1477–1485. https://doi.org/10.1084/jem.187.9.1477
- Ziebell JM, Morganti-Kossmann MC (2010) Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics 7(1): 22–30. https://doi.org/10.1016/j.nurt.2009.10.016
- Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly (ADP-ribose) (Par) polymer-induced cell death. Proc Natl Acad Sci U S A 103(48): 18314–18319. https://doi.org/10.1073/pnas.0606528103
- Трофимов АО, Кравец ЛЯ (2010) Апоптоз нейронов при черепно-мозговой травме. Совр технол в мед 3: 92–97. [Trofimov AO, Kravets LY (2010) Apoptosis of neurons in traumatic brain injury. Modern Technol Med 3: 92–97. (In Russ)].
- Jenkins L, Dixon CE, Peters G, Gao WM, Zhang X, Adelson PD, Kochanek PM (2001) Cell signaling: serine/threonine protein kinases and traumatic brain injury. Brain Injury 163–180. https://doi.org/10.1007/978-1-4615-1721-4_8
- Zhang X, Graham SH, Kochanek PM, Marion DW, Nathaniel PD, Watkins SC, Clark RSB (2003) Caspase-8 expression and proteolysis in human brain after severe head injury. FASEB J 17(10): 1367–1369. https://doi.org/10.1096/fj.02-1067fje
- Akamatsu Y, Hanafy KA (2020) Cell death and recovery in traumatic brain injury. Neurotherapeutics 17(2): 446–456. https://doi.org/10.1007/s13311-020-00840-7
- Clark RSB, Kochanek PM, Chen M, Watkins SC, Marion DW, Chen J, Hamilton RL, Loeffert JE, Graham SH (1999) Increases in Bcl-2 and cleavage of caspase-1 and caspase-3 in human brain after head injury. FASEB J 13(8): 813–821. https://doi.org/10.1096/fasebj.13.8.813
- Brough D, Rothwell NJ (2007) Caspase-1-dependent processing of pro-interleukin-1β is cytosolic and precedes cell death. J Cell Sci 120(5): 772–781. https://doi.org/10.1242/jcs.03377
- Liu W, Chen Y, Meng J, Wu M, Bi F, Chang C, Li H, Zhang L (2018) Ablation of caspase-1 protects against TBI-induced pyroptosis in vitro and in vivo. J Neuroinflammat 15(1): 1–16. https://doi.org/10.1186/s12974-018-1083-y
- Bredesen DE (2008) Programmed cell death mechanisms in neurological disease. Current Mol Med 8(3): 173–186. https://doi.org/10.2174/156652408784221315
- Hanson S, Dharan A, PV J, Pal S, Nair BG, Kar R, Mishra N (2023) Paraptosis: A unique cell death mode for targeting cancer. Front Pharmacol 14: 1159409. https://doi.org/10.3389/fphar.2023.1159409
- Bertheloot D, Latz E, Franklin BS (2021) Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol 18(5): 1106–1121. https://doi.org/10.1038/s41423-020-00630-3
- Dolma S, Lessnick SL, Hahn WC, Stockwell BR (2003) Identification of genotype-selective antitumor agents using synthetic lethal chemical screening in engineered human tumor cells. Cancer Cell 3(3): 285–296. https://doi.org/10.1016/S1535-6108(03)00050-3
- Yang WS, Stockwell BR (2008) Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-ras-harboring cancer cells. Chem Biolol 15(3): 234–245. https://doi.org/10.1016/j.chembiol.2008.02.010
- Jiang X, Stockwell BR, Conrad M (2021) Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol 22(4): 266–282. https://doi.org/10.1038/s41580-020-00324-8
- Hu X, Xu Y, Zhang H, Li Y, Wang X, Xu C, Ni W, Zhou K (2022). Role of necroptosis in traumatic brain and spinal cord injuries. J Adv Res 40: 125–134. https://doi.org/10.1016/j.jare.2021.12.002
- Geng Z, Guo Z, Guo R, Ye R, Zhu W, Yan B (2021) Ferroptosis and traumatic brain injury. Brain Res Bull 172: 212–219. https://doi.org/10.1016/j.brainresbull.2021.04.023
- Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Iltzsche A, Brand M (2012) Acute inflammation initiates the regenerative response in the adult zebrafish brain. Science 338(6112): 1353–1356. https://doi.org/10.1126/science.1228773
- Gage FH, Kempermann G, Palmer TD, Peterson DA, Ray J (1998) Multipotent progenitor cells in the adult dentate gyrus. J Neurobiol 36(2): 249–266. https://doi.org/10.1002/(SICI)1097-4695(199808)36:2<249:AID-NEU11>3.0.CO;2-9
- Kizil C, Kaslin J, Kroehne V, Brand M (2012) Adult neurogenesis and brain regeneration in zebrafish. Development Neurobiol 72(3): 429–461. https://doi.org/10.1002/dneu.20918
- Thau-Zuchman O, Shohami E, Alexandrovich AG, Trembovler V, Leker RR (2012) The anti-inflammatory drug carprofen improves long-term outcome and induces gliogenesis after traumatic brain injury. J Neurotrauma 29(2): 375–384. https://doi.org/10.1089/neu.2010.1673
- Keefe KM, Sheikh IS, Smith GM (2017) Targeting neurotrophins to specific populations of neurons: Ngf, bdnf, and nt-3 and their relevance for treatment of spinal cord injury. International J Mol Sci 18(3): 548. https://doi.org/10.3390/ijms18030548
- Cacialli P (2021) Neurotrophins time point intervention after traumatic brain injury: From zebrafish to human. Int J Mol Sci 22(4): 1585. https://doi.org/10.3390/ijms22041585
- Xiong Y, Mahmood A, Chopp M (2019) Remodeling dendritic spines for treatment of traumatic brain injury. Neural Regener Res 14(9): 1477. https://doi.org/10.4103/1673-5374.255957
- Xue J, Zhang Y, Zhang J, Zhu Z, Lv Q, Su J (2021) Astrocyte-derived CCL7 promotes microglia-mediated inflammation following traumatic brain injury. Int Immunopharmacol 99: 107975. https://doi.org/10.1016/j.intimp.2021.107975
- Zheng P, Zhang N, Ren D, Yu C, Zhao B, Zhang Y (2023) Integrated spatial transcriptome and metabolism study reveals metabolic heterogeneity in human injured brain. Cell Rep Med 4(6): 101057. https://doi.org/10.1016/j.xcrm.2023.101057
- Pijet B, Stefaniuk M, Kaczmarek L (2019) MMP-9 contributes to dendritic spine remodeling following traumatic brain injury. Neural Plasticity 2019: 3259295. https://doi.org/10.1155/2019/3259295
- Zhou H, Hu L, Li J, Ruan W, Cao Y, Zhuang J, Xu H, Peng Y, Zhang Z, Xu C, Yu Q, Li Y, Dou Z, Hu J, Wu X, Yu X, Gu C, Cao S, Yan F, Chen G (2021) AXL kinase-mediated astrocytic phagocytosis modulates outcomes of traumatic brain injury. J Neuroinflammat 18(1): 1–17. https://doi.org/10.1186/s12974-021-02201-3
- Dorsett CR, McGuire JL, DePasquale EAK, Gardner AE, Floyd CL, McCullumsmith RE (2017) Glutamate neurotransmission in rodent models of traumatic brain injury. J Neurotrauma 34(2): 263–272. https://doi.org/10.1089/neu.2015.4373
- Tikhonova MA, Maslov NA, Bashirzade AA, Nehoroshev EV, Babchenko VY, Chizhova ND, Tsibulskaya EO, Akopyan AA, Markova EV, Yang YL, Lu KT, Kalueff AV, Aftanas LI, Amstislavskaya TG (2022) A novel laser-based zebrafish model for studying traumatic brain injury and its molecular targets. Pharmaceutics 14(8): 1751. https://doi.org/10.3390/pharmaceutics14081751
- Dreßler J, Hanisch U, Kuhlisch E, Geiger KD (2007) Neuronal and glial apoptosis in human traumatic brain injury. Int J Legal Med 121(5): 365–375. https://doi.org/10.1007/s00414-006-0126-6
- Ng I, Yeo TT, Tang WY, Soong R, Ng PY, Smith DR (2000) Apoptosis occurs after cerebral contusions in humans. Neurosurgery 46(4): 949–956. https://doi.org/10.1097/00006123-200004000-00034
- Dai JX, Ma YB, Le NY, Cao J, Wang Y (2018) Large animal models of traumatic brain injury. International J Neurosci 128(3): 243–254. https://doi.org/10.1080/00207454.2017.1380008
- McIlwain DR, Berger T, Mak TW (2015) Caspase functions in cell death and disease. Cold Spring Harbor Perspect Biol 7(4): a026716. https://doi.org/10.1101/cshperspect.a026716
- Seyfried D, Han Y, Zheng Z, Day N, Moin K, Rempel S, Sloane B, Chopp M (1997) Cathepsin B and middle cerebral artery occlusion in the rat. J Neurosurg 87(5): 716–723. https://doi.org/10.3171/jns.1997.87.5.0716
- Zhang X, Chen J, Graham SH, Du L, Kochanek PM, Draviam R, Guo F, Nathaniel PD, Szabó C, Watkins SC, Clark RSB (2002) Intranuclear localization of apoptosis-inducing factor (Aif) and large scale dna fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J Neurochem 82(1): 181–191. https://doi.org/10.1046/j.1471-4159.2002.00975.x
- Xiong Y, Mahmood A, Chopp M (2013) Animal models of traumatic brain injury. Nat Rev Neurosci 14(2): 128–142. https://doi.org/10.1038/nrn3407
- Ma X, Aravind A, Pfister BJ, Chandra N, Haorah J (2019) Animal models of traumatic brain injury and assessment of injury severity. Mol Neurobiol 56(8): 5332–5345. https://doi.org/10.1007/s12035-018-1454-5
- Stewart AM, Braubach O, Spitsbergen J, Gerlai R, Kalueff AV (2014) Zebrafish models for translational neuroscience research: From tank to bedside. Trends Neurosci 37(5): 264–278. https://doi.org/10.1016/j.tins.2014.02.011
- Kishimoto N, Shimizu K, Sawamoto K (2012) Neuronal regeneration in a zebrafish model of adult brain injury. Disease Models & Mechan 5(2): 200–209. https://doi.org/10.1242/dmm.007336
- Lim DA, Alvarez-Buylla A (2016) The adult ventricular–subventricular zone (V-svz) and olfactory bulb (Ob) neurogenesis. Cold Spring Harbor Perspect Biol 8(5): a018820. https://doi.org/10.1101/cshperspect.a018820
- Panula P, Chen YC, Priyadarshini M, Kudo H, Semenova S, Sundvik M, Sallinen V (2010). The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol Disease 40(1): 46–57. https://doi.org/10.1016/j.nbd.2010.05.010
- Blaser RE, Rosemberg DB (2012) Measures of anxiety in zebrafish (Danio rerio): Dissociation of black/white preference and novel tank test. PLoS One 7(5): e36931. https://doi.org/10.1371/journal.pone.0036931
- Hentig J, Cloghessy K, Hyde DR (2021) Shuttle box assay as an associative learning tool for cognitive assessment in learning and memory studies using adult zebrafish. J Visual Exp 173: 62745. https://doi.org/10.3791/62745
- Oppenheim RW (2019) Adult hippocampal neurogenesis in mammals (And humans): The death of a central dogma in neuroscience and its replacement by a new dogma. Development Neurobiol 79(3): 268–280. https://doi.org/10.1002/dneu.22674
- Zupanc GKH (2001) Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish. Brain Behav and Evol 58(5): 250–275. https://doi.org/10.1159/000057569
- Schmidt R, Strähle U, Scholpp S (2013) Neurogenesis in zebrafish – from embryo to adult. Neural Development 8(1): 1–13. https://doi.org/10.1186/1749-8104-8-3
- Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4): 645–660. https://doi.org/10.1016/j.cell.2008.01.033
- Sorrells SF, Paredes MF, Cebrian-Silla A, Sandoval K, Qi D, Kelley KW, James D, Mayer S, Chang J, Auguste KI, Chang EF, Gutierrez AJ. Kriegstein AR, Mathern GW, Oldham MC, Huang EJ, Garcia-Verdugo JM, Yang Z, Alvarez-Buylla A (2018) Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature 555(7696): 377–381. https://doi.org/10.1038/nature25975
- Jin K, Wang X, Xie L, Mao XO, Zhu W, Wang Y, Shen J, Mao Y, Banwait S, Greenberg DA (2006) Evidence for stroke-induced neurogenesis in the human brain. Proc Natl Acad Sci U S A 103(35): 13198–13202. https://doi.org/10.1073/pnas.0603512103
- Parent JM, Vexler ZS, Gong C, Derugin N, Ferriero DM (2002) Rat forebrain neurogenesis and striatal neuron replacement after focal stroke. Ann Neurol 52(6): 802–813. https://doi.org/10.1002/ana.10393
- Cuartero MI, García-Culebras A, Torres-López C, Medina V, Fraga E, Vázquez-Reyes S, Jareño-Flores T, García-Segura JM, Lizasoain I, Moro MÁ (2021) Post-stroke neurogenesis: Friend or foe? Front Cell and Development Biol 9: 657846. https://doi.org/10.3389/fcell.2021.657846
- McCutcheon V, Park E, Liu E, Sobhebidari P, Tavakkoli J, Wen XY, Baker AJ (2017) A novel model of traumatic brain injury in adult zebrafish demonstrates response to injury and treatment comparable with mammalian models. J Neurotrauma 34(7): 1382–1393. https://doi.org/10.1089/neu.2016.4497
- Schupper AJ, Chanenchuk T, Racanelli A, Price G, Hadjipanayis CG (2022) Laser hyperthermia: Past, present, and future. Neuro Oncol 24 (Suppl 6): S42–S51. https://doi.org/10.1093/neuonc/noac208.
- Yuan D, Guan S, Wang Z., Ni H, Ding D, Xu W, Li G (2021) HIF-1α aggravated traumatic brain injury by NLRP3 inflammasome-mediated pyroptosis and activation of microglia. J Chem Neuroanat 116: 101994. https://doi.org/10.1016/j.jchemneu.2021.101994
- Grandel H, Kaslin J, Ganz J, Wenzel I, Brand M (2006) Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Development Biol 295(1): 263–277. https://doi.org/10.1016/j.ydbio.2006.03.040
- Hasani H, Sun J, Zhu SI, Rong Q, Willomitzer F, Amor R, McConnell G, Cossairt O, Goodhill GJ (2023) Whole-brain imaging of freely-moving zebrafish. Front Neurosci 17: 1127574. https://doi.org/10.3389/fnins.2023.1127574
- Shohami E, Mechoulam R (2000) Dexanabinol (HU-211): A nonpsychotropic cannabinoid with neuroprotective properties. Drug Devevelopment Res 50: 211–215. https://doi.org/10.1002/1098-2299(200007/08)50:3/4
- Shohami E, Beit-Yannai E, Horowitz M, Kohen R (1997) Oxidative stress in closed-head injury: brain antioxidant capacity as an indicator of functional outcome. J Cerebral Blood Flow Metabol 17(10): 1007–1019. https://doi.org/10.1097/00004647-199710000-00002
- Samii A, Badie H, Fu K, Luther RR, Hovda DA (1999) Effects of an N-type calcium channel antagonist (SNX 111; Ziconotide) on calcium-45 accumulation following fluid-percussion injury. J Neurotrauma 16(10): 879–892. https://doi.org/10.1089/neu.1999.16.879
- Hassan H, Grecksch G, Rüthrich H, Krug M (1999) Effects of nicardipine, an antagonist of L-type voltage-dependent calcium channels, on kindling development, kindling-induced learning deficits and hippocampal potentiation phenomena. Neuropharmacology 38(12): 1841–1850. https://doi.org/10.1016/S0028-3908(99)00067-2
- Thompson SN, Carrico KM, Mustafa AG, Bains M, Hall ED (2010) A pharmacological analysis of the neuroprotective efficacy of the brain-and cell-permeable calpain inhibitor MDL-28170 in the mouse controlled cortical impact traumatic brain injury model. J Neurotrauma 27(12): 2233–2243. https://doi.org/10.1089/neu.2010.1474
- Mbye LH, Singh IN, Sullivan PG, Springer JE, Hall ED (2008) Attenuation of acute mitochondrial dysfunction after traumatic brain injury in mice by NIM811, a non-immunosuppressive cyclosporin A analog. Exp Neurol 209(1): 243–253. https://doi.org/10.1016/j.expneurol.2007.09.025
- Bains M, Hall ED (2012) Antioxidant therapies in traumatic brain and spinal cord injury. Biochim Biophys Acta (BBA) Mol Basis Disease 1822(5): 675–684. https://doi.org/10.1016/j.bbadis.2011.10.017
- Pandya JD, Readnower RD, Patel SP, Yonutas HM, Pauly JR, Goldstein GA, Rabchevsky AG, Sullivan PG (2014) N-acetylcysteine amide confers neuroprotection, improves bioenergetics and behavioral outcome following TBI. Exp Neurol 257: 106–113. https://doi.org/10.1016/j.expneurol.2014.04.020
- Xu J, Fan G, Chen S, Wu Y, Xu XM, Hsu CY (1998) Methylprednisolone inhibition of TNF-α expression and NF-kB activation after spinal cord injury in rats. Mol Brain Res 59(2): 135–142. https://doi.org/10.1016/S0169-328X(98)00142-9
- Duberley KE, Heales SJR, Abramov AY, Chalasani A, Land JM, Rahman S, Hargreaves IP (2014) Effect of Coenzyme Q10 supplementation on mitochondrial electron transport chain activity and mitochondrial oxidative stress in Coenzyme Q10 deficient human neuronal cells. Int J Biochem Cell Biol 50: 60–63. https://doi.org/10.1016/j.biocel.2014.02.003
- Homsi S, Federico F, Croci N, Palmier B, Plotkine M, Marchand-Leroux C, Jafarian-Tehrani M (2009) Minocycline effects on cerebral edema: relations with inflammatory and oxidative stress markers following traumatic brain injury in mice. Brain Res 1291: 122–132. https://doi.org/10.1016/j.brainres.2009.07.031
- Bye N, Habgood MD, Callaway JK, Malakooti N, Potter A, Kossmann T, Morganti-Kossmann MC (2007) Transient neuroprotection by minocycline following traumatic brain injury is associated with attenuated microglial activation but no changes in cell apoptosis or neutrophil infiltration. Exp Neurol 204(1): 220–233. https://doi.org/10.1016/j.expneurol.2006.10.013
- McCutcheon V, Park E, Liu E, Sobhebidari P, Tavakkoli J, Wen XY, Baker AJ (2017) A novel model of traumatic brain injury in adult zebrafish demonstrates response to injury and treatment comparable with mammalian models. J Neurotrauma 34(7): 1382–1393. https://doi.org/10.1089/neu.2016.4497
- Stewart AM, Gerlai R, Kalueff AV (2015) Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery. Front Behav Neurosci 9: 14. https://doi.org/10.3389/fnbeh.2015.00014
- Bozhko DV, Myrov VO, Kolchanova SM, Polovian AI, Galumov GK, Demin KA, Zabegalov KN, Strekalova T, de Abreu MS, Petersen EV, Kalueff AV (2022) Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses. Progress Neuropsychopharmacol Biol Psychiatry 112: 110405. https://doi.org/10.1016/j.pnpbp.2021.110405
- Ghaddar B, Lübke L, Coure, D, Rastega S, Diotel N (2021) Cellular mechanisms participating in brain repair of adult zebrafish and mammals after injury. Cells 10(2): 391. https://doi.org/10.3390/cells10020391
- Diotel N, Lübke L, Strähle U, Rastegar S (2020) Common and distinct features of adult neurogenesis and regeneration in the telencephalon of zebrafish and mammals. Front Neurosci 14: 568930. https://doi.org/10.3389/fnins.2020.568930
- Schmidt R, Beil T, Strähle U, Rastegar S (2014) Stab wound injury of the zebrafish adult telencephalon: A method to investigate vertebrate brain neurogenesis and regeneration. J Visual Exp 90: 51753. https://doi.org/10.3791/51753
- Колесникова ТО, Ильин НП, Котова ММ, Калуев АВ (2023) Зебраданио как перспективная модель в трансляционной нейробиологии и биомедицине. Успехи физиол наук 54(3): 1–18. [Kolesnikova TO, Ilyin NP, Kotova MM, Kaluev AV (2023) Zebrafish as a promising model in translational neuroscience and biomedicine. Advanc Physiol Sci 54(3): 1–18. (In Russ)]. https://doi.org/10.1134/S0869813919110062
补充文件
