Isosmotic Striction of Rat Aorta Smooth Muscle Cells During Activation of Purinergic Receptors: Role of Chlorine Transport

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

We studied the effect of the purinergic signaling system and Cl-transporters on vascular smooth muscle cells (SMC) isosmotic striction that occurs when osmotic pressure is normalized after prolonged incubation in a hypoosmotic medium. The study was performed with the method of myography on endothelium-denuded ring segments of the male Wistar rats aorta. Isosmotic striction was induced by placing the vascular segments in normosmotic Krebs solution containing 120 mM NaCl after a 40-minute incubation in a hyposmotic Krebs solution containing 40 mM NaCl. Purinergic receptors were activated by adenosine 5'-triphosphate (ATP, 500 μM) as nonselective P2X and P2Y receptor agonist, and uridine 5'-triphosphate (UTP, 500 μM) as selective P2Y receptor agonist. ATP and UTP eliminated the transient nature of the aorta SMC isosmotic striction without affecting its amplitude. Pretreatment of vascular segments with ATP and UTP during incubation in a hyposmotic solution completely suppressed the development of isosmotic striction in the presence of ATP or UTP, but did not affect isosmotic striction without activators of purinergic receptors. The inhibitor of Na+, K+, 2Cl--cotransport (NKCC) bumetanide (100 μM) abolished isosmotic striction in the presence of ATP, but not UTP, but restored its transient character. A non-selective blocker of Cl channels and Cl, HCO3 exchanger DIDS (100 μM) suppressed the development of isosmotic striction both in the presence of ATP and UTP. The potassium channel blocker tetraethylammonium (10 mM) potentiates the constrictor action of UTP on isosmotic striction. We suppose purinergic receptors eliminate the transient isosmotic striction by activating Cl currents through activation of P2Y receptors. The mechanism of interaction between the purinergic signaling system and Cl transport during changes in cell volume requires further study.

全文:

受限制的访问

作者简介

L. Smaglii

Siberian State Medical University; Tomsk State University; Seversk biophysical scientific center

编辑信件的主要联系方式.
Email: lud.smagly@yandex.ru
俄罗斯联邦, Tomsk; Tomsk; Seversk

V. Gusakova

Siberian State Medical University

Email: lud.smagly@yandex.ru
俄罗斯联邦, Tomsk

S. Gusakova

Siberian State Medical University

Email: lud.smagly@yandex.ru
俄罗斯联邦, Tomsk

M. Pshemyskiy

Siberian State Medical University

Email: lud.smagly@yandex.ru
俄罗斯联邦, Tomsk

S. Koshuba

Siberian State Medical University

Email: lud.smagly@yandex.ru
俄罗斯联邦, Tomsk

E. Golovanov

Siberian State Medical University

Email: lud.smagly@yandex.ru
俄罗斯联邦, Tomsk

参考

  1. Jentsch TJ (2016) VRACs and other ion channels and transporters in the regulation of cell volume and beyond. Nature Rev Mol Cell Biol 17(5): 293–307. https://doi.org/10.1038/nrm.2016.29
  2. Sun XZ, Tian XY, Wang DW, Li J (2014) Effects of fasudil on hypoxic pulmonary hypertension and pulmonary vascular remodeling in rats. Eur Rev Med Pharmacol Sci 18(7): 959–964.
  3. Shi X–L, Wang G-L, Zhang Z, Liu Y-J, Chen J-H, Zhou J-G, Qiu Q-Y, Guan Y-Y (2007) Alteration of Volume-Regulated Chloride Movement in Rat Cerebrovascular Smooth Muscle Cells During Hypertension. Hypertension 49: 1371–1377. https://doi.org/10.1161/HYPERTENSIONAHA.106.084657
  4. Anfinogenova YJ, Baskakov MB, Kovalev IV, Kilin AA, Dulin NO, Orlov SN (2004) Cell-volume-dependent vascular smooth muscle contraction: role of Na+-K+-2Cl– -cotransport, intracellular Cl– and L-type Ca2+ channels. Pflugers Arch 449(1): 42–55. https://doi.org/10.1007/s00424–004–1316-z
  5. Hoffmann EK, Lambert IH, Pedersen SF (2009) Physiology of Cell Volume Regulation in Vertebrates. Physiol Rev 89(1): 193–277. https://doi.org/10.1152/physrev.00037.2007
  6. O’Neill WC (1999) Physiological significance of volume-regulatory transporters. Cell Physiol 276(5): C995–C1011. https://doi.org/10.1152/ajpcell.1999.276.5.C995
  7. Emma F, McManus M, Strange K (1997) Intracellular electrolytes regulate the volume set point of the organic osmolyte/anion channel VSOAC. Am J Physiol 272(6 Pt 1): C1766–C1775. https://doi.org/10.1152/ajpcell.1997.272.6.C1766
  8. Lauf PK, Bauer J, Adragna NC, Fujise H, Zade-Oppen AMM, Ryu KH, Delpire E (1992) Erythrocyte K-Cl cotransport: properties and regulation. Am J Physiol 263(5 Pt 1): C917–C932. https://doi.org/10.1152/ajpcell.1992.263.5.C917
  9. Ghouli MR, Fiacco TA, Binder DK (2022) Structure-function relationships of the LRRC8 subunits and subdomains of the volume-regulated anion channel (VRAC). Front Cell Neurosci 16: 962714. https://doi.org/10.3389/fncel.2022.962714
  10. Qusous A, Geewan CS, Greenwell P, Kerrigan MJ (2011) siRNA-mediated inhibition of Na+-K+-2Cl– cotransporter (NKCC1) and regulatory volume increase in the chondrocyte cell line C-20/A4. J Membr Biol 243: 25–34. https://doi.org/10.1007/s00232–011–9389-z
  11. Bergfeld GR, Forrester T (1992) Release of ATP from human erythrocytes in response to brief period of hypoxia and hypercapnia. Cardiovasc Res 26: 40–47. https://doi.org/10.1093/cvr/26.1.40
  12. Takahara N, Ito S, Furuya K, Naruse K, Aso H, Kondo M, Sokabe M, Hasegawa Y (2014) Real-time imaging of ATP release induced by mechanical stretch in human airway smooth muscle cells. Am J Respir Cell Mol Biol 51(6): 772–782. https://doi.org/10.1165/rcmb.2014–0008OC
  13. Lohman AW, Billaud M, Isakson BE (2012) Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res 95(3): 269–280. https://doi.org/10.1093/cvr/cvs187
  14. Kennedy C (2015) ATP as a cotransmitter in the autonomic nervous system. Autonom Neuroscie: basic and clin 191: P2–P15. https://doi.org/10.1016/j.autneu.2015.04.004
  15. Sprague RS, Ellsworth ML (2012) Erythrocyte derived ATP and perfusion distribution: role of intracellular and intracellular communication. Microcirculation 19: 430–439. https://doi.org/0.1111/j.1549–8719.2011.00158.x
  16. Ellsworth ML, Forrester T, Ellis CG, Dietrich HH (1995) The erythrocyte as a regulator of vascular tone. Am J Physiol 269: H2155–H2161. https://doi.org/10.1152/ajpheart.1995.269.6.H2155
  17. Wan J, Ristenpart WD, Stone HA (1998) Dynamics of shear induced ATP release from red blood cells. Proc Natl Acad Sci U S A 105: 16432–16437. https://doi.org/10.1073/pnas.0805779105
  18. Kalsi KK, Gonzalez-Alonso J (2012) Temperature dependent release of ATP from human erythrocytes: mechanism for the control of local tissue perfusion. Exp Physiol 97: 419–432. https://doi.org/10.1113/expphysiol.2011.064238
  19. Burnstock G (2018) Purine and purinergic receptors. Brain Neurosci Adv 2: 1–10. https://doi.org/10.1177/2398212818817494
  20. Смаглий ЛВ, Гусакова ВС, Горянова АМ, Голованов ЕА, Чибисов ЕЕ, Бирулина ЮГ, Гусакова СВ (2020) Роль АТФ и транспортеров ионов Cl– в регуляции сократительной активности гладких мышц легочной артерии в гипоосмотической среде. Артер гипертен 25(6): 573–580. [Smaglii LV, Gusakova VS, Goryanova AM, Golovanov EA, Chibisov EE, Birulina JG, Gusakova SV (2020) Role of ATP and Cl– transporters in regulation of contractile activity of pulmonary artery smooth muscles in hyposmotic conditions. Arterial Hyperten 25(6): 573–580. (In Russ)]. https://doi.org/10.18705/1607–419X-2020–26–5–573–580
  21. Burnstock G (2017) Purinergic Signaling in the Cardiovascular System. Circulat Res 120(1): 207–228. https://doi.org/10.1161/CIRCRESAHA.116.309726
  22. Rameshrad M, Babaei H, Azarmi Y, Fouladia DF (2016) Rat aorta as a pharmacological tool for in vitro and in vivo studies. Life Sci 145: 190–204. https://doi.org/10.1016/j.lfs.2015.12.043
  23. Choi RCY, Chu GKY, Siow NL, Yung AWY, Yung LY, Lee PSC, Lo CCW, Simon J, Dong TTX, Barnard EA, Tsim KWK (2013) Activation of UTP-sensitive P2Y2 receptor induces the expression of cholinergic genes in cultured cortical neurons: a signaling cascade triggered by Ca2+ mobilization and extracellular regulated kinase phosphorylation. Mol Pharmacol 84(1): 50–61. https://doi.org/10.1124/mol.112.084160
  24. Attah IY, Neumann A, Al-Hroub H, Rafehi M, Baqi Y, Namasivayam V, Müller CE (2020) Ligand binding and activation of UTP-activated G protein-coupled P2Y2 and P2Y4 receptors elucidated by mutagenesis, pharmacological and computational studies. Biochim Biophys Acta Gen Subj 1864(3): 129501. https://doi.org/10.1016/j.bbagen.2019.129501
  25. Koszela-Piotrowska I, Choma K, Bednarczyk P, Dołowy K, Szewczyk A, Kunz WS, Malekova L, Kominkova V, Ondrias K (2007) Stilbene derivatives inhibit the activity of the inner mitochondrial membrane chloride channels. Cell Mol Biol Lett 12(4): 493–508. https://doi.org/10.2478/s11658–007–0019–9
  26. Alexander SPH, Mathie A, Peters JA (2009) Chloride channels. Br J Pharmacol 158(Suppl 1): S130–S134. https://doi.org/10.1111/j.1476–5381.2009.00503_6.x
  27. Zhang Q, Jian L, Yao D, Rao B, Xia Y, Hu K, Li S, Shen Y, Cao M, Qin A, Zhao J, Cao Y (2023) The structural basis of the pH-homeostasis mediated by the Cl–/HCO3– exchanger, AE2. Nat Commun 14: 1812. https://doi.org/10.1038/s41467–023–37557-y
  28. Farisa A, Spence DM (2008) Measuring the simultaneous effects of hypoxia and deformation on ATP release from erythrocytes. The Analyst 133: 678–682. https://doi.org/10.1039/B719990B
  29. Grygorczyk R, Orlov SN (2017) Effects of Hypoxia on Erythrocyte Membrane Properties – Implications for Intravascular Hemolysis and Purinergic Control of Blood Flow. Front Physiol 8: 1110. https://doi.org/10.3389/fphys.2017.01110
  30. Tuder RM, Yun JH, Bhunia A, Fijalkowska I (2007) Hypoxia and chronic lung disease. J Mol Med (Berl) 85: 1317–1324. https://doi.org/10.1007/s00109–007–0280–4
  31. Namkung W, Lee JA, Ahn W, Han WS, Kwon SW, Ahn DS, Kim KH, Lee MG (2003) Ca2+ Activates Cystic Fibrosis Transmembrane Conductance Regulator- and Cl–-dependent HCO3– Transport in Pancreatic Duct Cells. J Biol Chem 278(1): 200–207. https://doi.org/10.1074/jbc.M207199200
  32. Bertoni APS, de Campos RP, Tamajusuku ASK, Stefani GP, Braganhol E, Battastini AMO, Wink MR (2020) Biochemical analysis of ectonucleotidases on primary rat vascular smooth muscle cells and in silico investigation of their role in vascular diseases. Life Sci 256: 117862. https://doi.org/10.1016/j.lfs.2020.117862
  33. Martin-Aragon Baudel M, Espinosa-Tanguma R, Nieves-Cintron M, Navedo MF (2020) Purinergic Signaling During Hyperglycemia in Vascular Smooth Muscle Cells. Front Endocrinol (Lausanne) 11: 329. https://doi.org/10.3389/fendo.2020.00329
  34. Orlov SN, Koltsova SV, Kapilevich LV, Dulin NO, Gusakova SV (2014) Cation-Chloride Cotransporters: Regulation, Physiological Significance, and Role in Pathogenesis of Arterial Hypertension. Biochemistry (Moscow) 79(13): 1546–1561. https://doi.org/10.1134/S0006297914130070
  35. Park S, Ku SK, Ji HW, Choi JH, Shin DM (2015) Ca(2+) is a Regulator of the WNK/OSR1/NKCC Pathway in a Human Salivary Gland Cell Line. Korean J Physiol Pharmacol 19(3): 249–255. https://doi.org/10.4196/kjpp.2015.19.3.249
  36. Zheng Y-M, Wang Y-X (2007) Sodium-calcium exchanger in pulmonary artery smooth muscle cells. Ann N Y Acad Sci 1099: 427–435. https://doi.org/10.1196/annals.1387.017
  37. Ralevic V (2021) Purinergic signalling in the cardiovascular system – a tribute to Geoffrey Burnstock. Purin Signal 17: 63–69. https://doi.org/10.1007/s11302–020–09734-x
  38. Kheifets V, Mochly-Rosen D (2007) Insight into intra- and inter-molecular interactions of PKC: design of specific modulators of kinase function. Pharmacol Res 55: 467–476. https://doi.org/10.1016/j.phrs.2007.04.014
  39. Fraga S, Luo Y, Jose P, Zandi-Nejad K, Mount DB, Soares-da-Silva P (2006) Dopamine D1-like receptor-mediated inhibition of Cl–/HCO3– exchanger activity in rat intestinal epithelial IEC-6 cells is regulated by G protein-coupled receptor kinase 6 (GRK 6). Cell Physiol Biochem 18(6): 347–360. https://doi.org/10.1159/000097612
  40. Yu K, Jiang T, Cui Y, Tajkhorshid E, Hartzell HC (2019) A network of phosphatidylinositol 4,5-bisphosphate binding sites regulates gating of the Ca2+-activated Cl– channel ANO1 (TMEM16A). Proc Natl Acad Sci U S A 116: 19952–19962. https://doi.org/10.1073/pnas.1904012116
  41. Gada KD, Logothetis DE (2022) PKC regulation of ion channels: The involvement of PIP2. J Biol Chem 298(6): 102035. https://doi.org/10.1016/j.jbc.2022.102035
  42. Chipperfield AR, Harper AA (2000) Chloride in smooth muscle. Progr Biophys Mol Biol 74(3–5): 175–221. https://doi.org/10.1016/S0079–6107(00)00024–9
  43. Bulley S, Jaggar JH (2014) Cl- channels in smooth muscle cells. Pflugers Arch 466(5): 861–872. https://doi.org/10.1007/s00424–013–1357–2
  44. Thomas-Gatewood C, Neeb ZP, Bulley S, Adebiyi A, Bannister JP, Leo MD, Jaggar JH (2011) TMEM16A channels generate Ca²⁺-activated Cl- currents in cerebral artery smooth muscle cells. Am J Physiol Heart Circ Physiol 301(5): H1819–H1827. https://doi.org/10.1152/ajpheart.00404.2011
  45. Salter KJ, Turner JL, Albarwani S, Clapp LH, Kozlowski RZ (1995) Ca(2+)-activated Cl– and K+ channels and their modulation by endothelin-1 in rat pulmonary arterial smooth muscle cells. Exp Physiol 80(5): 683–884. https://doi.org/10.1113/expphysiol.1995.sp003889
  46. Bae YM, Kim KS, Park JK, Ko E, Ryu SY, Baek HJ, Lee SH, Ho WK, Earm YE (2001) Ca2+i-dependent membrane currents in vascular smooth muscle cells of the rabbit. Life Sci 69(21): 2451–2466. https://doi.org/10.1016/S0024–3205(01)01323–6

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. The effect of purinergic receptor activators on the development of isoosmotic striction of the smooth muscle segments of the rat aorta in a series of experiments described in the section "Research methods" (detailed description of the results in the text). (a) – the effect of ATP (500 microns) and UTF (500 microns) on the isoosmotic friction obtained according to the first experimental scheme. (b) – the effect of ATP (500 µm) and UTF (500 µm) on the isoosmotic friction obtained according to the second experimental scheme. (c) – the effect of ATP (500 microns) and UTF (500 microns) on the isoosmotic friction obtained according to the third experimental scheme. On the abscissa axis is time (hours), on the ordinate axis is mechanical stress (mN). The arrows show the addition and removal of solutions. The dotted line shows the change in the mechanical stress of the segment in the control, the solid line shows the change when ATP or UTF is added. The diagrams show the median and interquartile range of the amplitude of the isoosmotic friction in the corresponding series of experiments. * – statistically significant about

下载 (316KB)
3. Fig. 2. The effect of the NKCC inhibitor bumetanide (100 µm, pretreatment 15 min) and the inhibitor of Cl-channels and Cl-/HCO3-exchanger DIDS (100 µm, pretreatment 30 min) on the development of isoosmotic striction of the smooth muscle segments of the rat aorta in the presence of 500 µm ATP (a) or 500 µm UTF (b). Bumetanide and DIDS were added 15 or 30 minutes, respectively, before induction of isoosmotic striction. On the abscissa axis – time (h), on the ordinate axis – mechanical stress (mN). The arrows show the addition and removal of solutions.

下载 (138KB)
4. Fig. 3. The effect of TEA (10 mM, pretreatment 10 min) on the amplitude and duration of isoosmotic aortic stricture in the presence of ATP (a) or UTF (b). A solid line shows the control isoosmotic striction in the absence of additives, dots – isoosmotic striction in the presence of TEA, dotted lines – isoosmotic striction in the presence of ATP or UTF, dotted line with a dot – the same, but with the action of TEA. TEA was added 10 minutes before the induction of isoosmotic striction. On the ordinate axis – mechanical stress (mN), on the abscissa axis - time (h).

下载 (124KB)
5. Fig. 4. A hypothetical scheme of interaction between the purinergic signaling system and the mechanisms of regulatory increase in cell volume during isoosmotic striction (explanations in the text). NKCC – Na+, K+, 2Cl--cotransport, CC – chlorine channels (without specifying the type), CaSS – calcium-activated chlorine channels, CaPC – calcium-activated potassium channels, CaC – potential-dependent calcium channels, NCa – Na+, Ca2+ exchanger, ATP - adenosine-5’-triphosphate, UTP – uridine-5’-triphosphate, P2X receptors, P2Y receptors, SPR – sarcoplasmic reticulum, IP3 – inositol-triphosphate, DAG – diacylglycerol, PKC – protein kinase C, ECl, hypo – equilibrium potential Cl – during incubation in a hypoosmotic medium; ECl, iso – The equilibrium potential of Cl is when returning to the isoosmotic medium. The blue arrows show the activating effect, the red ones show the inhibitory effect.

下载 (223KB)

版权所有 © Russian Academy of Sciences, 2024