Противообрастающие покрытия на основе природоподобных технологий для применения в морских условиях
- Авторы: Харченко У.В.1, Егоркин В.С.1, Вялый И.Е.1, Синебрюхов С.Л.1, Гнеденков С.В.1
-
Учреждения:
- Институт химии ДВО РАН
- Выпуск: № 6 (2024)
- Страницы: 56-72
- Раздел: Химические науки. Функциональные покрытия
- URL: https://modernonco.orscience.ru/0869-7698/article/view/677443
- DOI: https://doi.org/10.31857/S0869769824060059
- EDN: https://elibrary.ru/HSUQAW
- ID: 677443
Цитировать
Полный текст
Аннотация
В морской индустрии защита от обрастания достигается в основном путем использования специальных противообрастающих покрытий, в полимерный матрикс которых заключены биоциды, высвобождающиеся с контролируемой скоростью в процессе эксплуатации объекта. Несмотря на признанную эффективность, данная стратегия борьбы обладает существенными недостатками, среди которых высокая экотоксичность используемых биоцидов. Ужесточение законодательства в области применения противообрастающих соединений активировало усилия по поиску альтернативных, более безопасных технологий. Особый научный интерес вызывают стратегии защиты от обрастания, которыми обладают живые организмы. В данной работе представлен обзор в области природоподобных технологий, применимых для разработки противообрастающих покрытий в морской сфере.
Полный текст

Об авторах
У. В. Харченко
Институт химии ДВО РАН
Автор, ответственный за переписку.
Email: ulyana-kchar@mail.ru
ORCID iD: 0000-0001-5166-5609
кандидат химических наук, научный сотрудник
Россия, ВладивостокВ. С. Егоркин
Институт химии ДВО РАН
Email: egorkin@ich.dvo.ru
ORCID iD: 0000-0001-5489-6832
кандидат химических наук, старший научный сотрудник
Россия, ВладивостокИ. Е. Вялый
Институт химии ДВО РАН
Email: igorvyal@gmail.com
ORCID iD: 0000-0003-3806-1709
кандидат химических наук, научный сотрудник
Россия, ВладивостокС. Л. Синебрюхов
Институт химии ДВО РАН
Email: sls@ich.dvo.ru
ORCID iD: 0000-0002-0963-0557
член-корреспондент РАН, доктор химических наук, заместитель директора
Россия, ВладивостокС. В. Гнеденков
Институт химии ДВО РАН
Email: svg21@hotmail.com
ORCID iD: 0000-0003-1576-8680
член-корреспондент РАН, доктор химических наук, директор
Россия, ВладивостокСписок литературы
- Schultz M.P., Bendick J.A., Holm E.R., Hertel W.M. Economic impact of biofouling on a naval surface ship // Biofouling. 2011. Vol. 27. P. 87–98. http://dx.doi.org/10.1080/08927014.2010.542809.
- Yebra D.M., Kiil S., Dam-Johansen K. Antifouling technology – past, present and future steps towards efficient and environmentally friendly antifouling coatings // Prog. Org. Coat. 2004. Vol. 50. P. 75–104. http://dx.doi.org/10.1016/j.porgcoat.2003.06.001.
- Carman M.L., Estes T.G., Feinberg A.W., Schumacher J.F., Wilkerson W., Wilson L.H., Callow M.E., Callow J.A., Brennan A.B. Engineered antifouling microtopographies – correlating wettability with cell attachment // Biofouling. 2006. Vol. 22. P. 11–21. https://doi.org/10.1080/08927010500484854.
- Liu K., Yao X., Jiang L. Recent developments in bio-inspired special wettability // Chemical Society Reviews. 2010. Vol. 39 (8). P. 3240. https://doi.org/10.1039/b917112f.
- Liu Y., Li G. A new method for producing “Lotus Effect” on a biomimetic shark skin // J. Colloid Interface Sci. 2012. Vol. 388 (1). P. 235–242. https://doi.org/10.1016/j.jcis.2012.08.033.
- Chen H., Zhang X., Ma L., Che D., Zhang D., Sudarshan T.S. Investigation on large-area fabrication of vivid shark skin with superior surface functions // Appl. Surf. Sci. 2014. Vol. 316. P. 124–131. http://dx.doi.org/10.1016/j.apsusc.2014.07.145.
- Chen Z., Zhao W., Xu J. et al. Designing environmentally benign modified silica resin coatings with biomimetic textures for antibiofouling // RSC Advances. 2015. Vol. 5 (46). P. 36874–36881. https://doi.org/10.1039/C5RA04658K.
- Chen Z., Zhao W., Mo M., Zhou C., Liu G., Zeng Z., Wu X., Xue Q. Architecture of modified silica resin coatings with various micro/nano patterns for fouling resistance: Microstructure and antifouling performance // RSC Advances. 2015. Vol. 118. P. 97862–97873. https://doi.org/10.1039/C5RA17179B.
- Chapman J., Hellio C., Sullivan T., Brown R., Russell S., Kiterringham E., Le Nor L., Regan F. Bioinspired synthetic macroalgae: Examples from nature for antifouling applications // Int. Biodeter. Biodegrad. 2014. Vol. 86. P. 6–13. https://doi.org/10.1016/j.ibiod.2013.03.036.
- Feng D.-Q., Wang W., Wang X., Qiu Y., Ke C.-H. Low barnacle fouling on leaves of the mangrove plant Sonneratia apetala and possible anti-barnacle defense strategies // Mar. Ecol. Prog. Ser. 2016. Vol. 544. P. 169–182. http://dx.doi.org/10.3354/meps11585.
- Qian P-Y., Li Z., Xu Y., Li Y., Fusetani N. Mini-review: marine natural products and their synthetic analogs as antifouling compounds: 2009–2014 // Biofouling. 2015. Vol. 31 (1). P. 101–122. https://doi.org/10.1080/08927014.2014.997226.
- Wang K-L., Wu Z-H., Wang Y., Wang C-Y., Xu Y. Mini-review: antifouling natural products from marine microorganisms and their synthetic analogs // Marine Drugs. 2017. Vol. 15. P. 266. https://doi.org/10.3390/md15090266.
- Liu L.L., Wu C.H., QianP.Y. Marine natural products as antifouling molecules – a mini-review (2014–2020) // Biofouling. 2020. Vol. 36 (10). P. 1210–1226. https://doi.org/10.1080/08927014.2020.1864343
- Sjögren M., Dahlström M., Göransson U., Jonsson P.R., Bohlin L. Recruitment in the field of Balanus improvisus and Mytilus edulis in response to the antifouling cyclopeptides barettin and 8,9-dihydrobarettin from the marine sponge Geodia barretti // Biofouling. 2004. Vol. 20 (6). P. 291–297. https://doi.org/10.1080/08927010400027027.
- Stupak M.E., Garcia M.T., Perez M.C. Non-toxic alternative compounds for marine antifouling paints // Int. Biodeter. Biodegrad. 2003. Vol. 52. P. 49–52. http://dx.doi.org/10.1016/S0964-8305(03)00035-0.
- Zmozinski A.V., Peres R.S., Brust F.R. et al. The effect of rue (Ruta graveolens) and ginger (Zingiber officinale) extracts as antifouling agents in silicone matrix coatings // J. Coat. Technol. Res. 2021. Vol. 18. P. 1013–1025. https://doi.org/10.1007/s11998-020-00454-w.
- Price R.R., Patchan M., Clare A., Rittschof D., Bonaventura J. Performance enhancement of natural antifouling compounds and their analogs through microencapsulation and controlled release // Biofouling. 1992. Vol. 6. P. 207–216. https://doi.org/10.1080/08927019209386223.
- Chambers L.D., Wharton J.A., Wood R.J.K., Walsh F.C., Stokes K.R. Techniques for the measurement of natural product incorporation into an antifouling coating // Prog. Org. Coat. 2014. Vol. 77. P. 473–484. http://dx.doi.org/10.1016/j.porgcoat.2013.11.013.
- Chen L., Xia C., Qian P-Y. Optimization of antifouling coatings incorporating butenolide, a potent antifouling agent via field and laboratory tests // Prog. Org. Coat. 2017. Vol. 109. P. 22–29. http://dx.doi.org/10.1016/j.porgcoat.2017.04.014.
- Feng D.Q., He J., Chen S.Y., Su P., Ke C.H., Wang W. The plant alkaloid camptothecin as a novel antifouling compound for marine paints: Laboratory bioassays and field trials // Mar. Biotechnol. 2018. Vol. 20. P. 623–638. https://doi.org/10.1007/s10126-018-9834-4.
- Kharchenko U., Beleneva I., Egorkin V., Vyalyi I., Izotov N., Tsvetnikov A., Karpenko A., Nguyên V. Chi Preparation of PEO/polymer coatings on aluminum alloy with antifouling properties // J. Coat. Technol. Res.2023. Vol. 20. P. 763–779. DOI: https://doi.org/10.1007/s11998-022-00706-x.
- Liu H., Chen S.Y., Guo J-Y., Su P.,Qiu Y-K., Ke C-H., Feng D-Q. Effective natural antifouling compounds from the plant Nerium oleander and testing // Int. Biodeter. Biodegrad. 2018. Vol. 127. P. 170–177. http://dx.doi.org/10.1016/j.ibiod.2017.11.022.
- Acevedo M.S., Puentes C., Carreño K., León J.G., Stupak M., García M., Pérez M., Blustein G. Antifouling paints based on marine natural products from Colombian Caribbean // Int. Biodeter. Biodegrad. 2013. Vol. 83. P. 97–104. http://dx.doi.org/10.1016/j.ibiod.2013.05.002.
- Peres R.S., Armelin E., Alemán C., Ferreira C.A. Modified tannin extracted from black wattle tree as an environmentally friendly antifouling pigment // Industrial Crops and Products. 2015. Vol. 65. P. 506–514. http://dx.doi.org/10.1016/j.indcrop.2014.10.033.
- Soliman Y.A.A., Brahim A.M., Moustafa A.H., Hamed M.A.F. Antifouling evaluation of extracts from Red Sea soft corals against primary biofilm and biofouling // Asian Pac. J. Trop. Biomed. 2017. Vol. 7 (11). P. 991–997. http://dx.doi.org/10.1016/j.apjtb.2017.09.016.
- Noor Idora M.S., Ferry M., Wan Nik W.B., Jasnizat S. Evaluation of tannin from Rhizophora apiculata as natural antifouling agents in epoxy paint for marine application // Prog. Org. Coat. 2015. Vol. 81. P. 125–131. http://dx.doi.org/10.1016/j.porgcoat.2014.12.012.
- Pérez M., García M., Sánchez M., Stupak M., Mazzuca M., Palermo J.A., Blustein G. Effect of secochiliolide acid isolated from the Patagonian shrub Nardophyllum bryoides as active component in antifouling paints // Int. Biodeter. Biodegrad. 2014. Vol. 89. P. 37–44. http://dx.doi.org/10.1016/j.ibiod.2014.01.009.
- Rajana R., Selvaraj M., Palraj S., Subramanian G. Studies on the anticorrosive and antifouling properties of the Gracilaria edulis extract incorporated epoxy paint in the Gulf of Mannar Coast, Mandapam, India // Prog. Org. Coat. 2016. Vol. 90. P. 448–454. http://dx.doi.org/10.1016/j.porgcoat.2015.11.008.
- Eguia E., Trueba A. Application of marine biotechnology in biocides for testing on environmentally coatings the production of natural innocuous antifouling // J. Coat. Technol. Res. 2007. Vol. 4. P. 191–202. http://dx.doi.org/10.1007/s11998-007-9022-3.
- Wang X., Yu L., Liu Y., Jiang X. Synthesis and fouling resistance of capsaicin derivatives containing amide groups // Sci. Total Environ. 2020. Vol. 710. P. 136361. https://doi.org/10.1016/j.scitotenv.2019.136361.
- Dahlstrom M., Elwing H. Adrenoceptor and other pharmacoactive compounds as putative antifoulants // Progress in Molecular and Subcellular Biology. 2006. Vol. 42. P. 171–202. https://doi.org/10.1007/3-540-30016-3_7.
- Qiu H., Feng K., Gapeeva A., Meurisch K., Kaps S., Li X., Yu L., Mishra Y., Adelung R., Baum M. Functional polymer materials for modern marine biofouling control // Prog. Polymer Sci. 2022. Vol. 127. P. 101516. https://doi.org/10.1016/j.progpolymsci.2022.101516.
- Chen S., Ma C., Zhang G. Biodegradable polymer as controlled release system of organic antifoulant to prevent marine biofouling // Prog. Org. Coat. 2017. Vol. 104. P. 58. https://doi.org/10.1016/j.porgcoat.2016.12.011.
- Ma C., Zhang W., Zhang G., Qian P.-Y. Environmentally Friendly Antifouling Coatings Based on Biodegradable Polymer and Natural Antifoulant // ACS Sustainable Chemistry & Engineering. 2017. Vol. 5 (7). P. 6304–6309. 10.1021/acssuschemeng.7b01385' target='_blank'>https://doi: 10.1021/acssuschemeng.7b01385.
- Liu M., Gan Z., Jia B., Hou Y., Zheng H., Wu Y., Li S., Guo Z. Mucilage-inspired robust antifouling coatings under liquid mediums // Chem. Eng. J. 2022. Vol. 446 (2). P. 136949. https://doi.org/10.1016/j.cej.2022.136949.
- Zhang H., Wang F., Guo Z. The antifouling mechanism and application of bio-inspired superwetting surfaces with effective antifouling performance // Advances in Colloid and Interface Science. 2024. Vol. 325. P. 103097. https://doi.org/10.1016/j.cis.2024.103097.
- Cui J., Liu L., Chen B., Hu J., Song M., Dai H., Wang X., Geng H. A comprehensive review on the inherent and enhanced antifouling mechanisms of hydrogels and their applications // Int. J. Biol. Macromol. 2024. Vol. 265 (2). P. 130994. https://doi.org/10.1016/j.ijbiomac.2024.130994.
- Yang J., Xue B., Zhou Y., Qin M., Wang W., Cao Y. Spray-Painted Hydrogel Coating for Marine Antifouling // Advanced Materials Technologies. 2021. Vol. 6 (3). P. 2000911. https://doi.org/10.1002/admt.202000911.
- Yuan Sun, Yubin Ji, Yanhe Lang, Lei Wang, Bing Liu, Zhizhou Zhang. A comparative study on the impact of the carbon nanotubes-modified polydimethylsiloxane nanocomposites on the colonization dynamics of the pioneer biofilm communities // Int. Biodeter. Biodegrad. 2018. Vol. 129. P. 195–201. https://doi.org/10.1016/j.ibiod.2018.02.011.
- Beigbeder A., Degee P., Conlan S.L., Mutton R.J., Clare A.S., Pettitt M.E., Callow M.E., Callow J.A., Dubois P. Preparation and characterisation of silicone-based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings // Biofouling. 2008. Vol. 24 (4). P. 291–302. https://doi.org/10.1080/08927010802162885.
- Beigbeder A., Labruyère C., Viville P. et al. Surface and Fouling-Release Properties of Silicone/Organomodified Montmorillonite Coatings // J. Adhes. Sci. Technol. 2011. Vol. 25 (14). P. 1689–1700. https://doi.org/10.1163/016942410X524129.
- Mohamed S. Selim, Ahmed Elmarakbi, Ahmed M. Azzam, Mohamed A. Shenashen, Ashraf M. EL-Saeed, Sherif A. El-Safty. Eco-friendly design of superhydrophobic nano-magnetite/silicone composites for marine foul-release paints // Prog. Org. Coat. 2018. Vol. 116. P. 21–34. https://doi.org/10.1016/j.porgcoat.2017.12.008.
- Mohamed S. Selim, Hui Yang, Feng Q. Wang, Nesreen A. Fatthallah, Yong Huang, Shigenori Kuga. Silicone/ZnO nanorod composite coating as a marine antifouling surface // Appl. Surf. Sci. 2019. Vol. 466. P. 40–50. https://doi.org/10.1016/j.apsusc.2018.10.004.
- Selim M.S., El-Safty S.A., El-Sockary M.A., Hashem A.I., Elenien O.M.A., El-Saeed A.M., Fatthallah N.A. Modeling of spherical silver nanoparticles in silicone-based nanocomposites for marine antifouling // RSC Advances. 2015. N 5 (78). P. 63175–63185. https://doi.org/10.1039/C5RA07400B.
- Qiu H., Hölken I., Gapeeva A., Filiz V., Adelung R., Baum M. Development and Characterization of Mechanically Durable Silicone-Polythiourethane Composites Modified with Tetrapodal Shaped ZnO Particles for the Potential Application as Fouling-Release Coating in the Marine Sector // Materials. 2018. Vol. 11 (12). P. 2413. https://doi.org/10.3390/ma11122413.
- Tian S., Jiang D., Pu J., Sun X., Li Z., Wu B., Zheng W., Liu W., Liu Z. A new hybrid silicone-based antifouling coating with nanocomposite hydrogel for durable antifouling properties // Chem. Eng. J. 2019. Vol. 370. P. 1–9. https://doi.org/10.1016/j.cej.2019.03.185.
- Cao Z., Cao P. Research Progress on Low-Surface-Energy Antifouling Coatings for Ship Hulls: A Review // Biomimetics. 2023. Vol. 8. P. 502. https://doi.org/10.3390/biomimetics8060502.
- Цветников А.К., Матвеенко Л.А., Машталяр Д.В., Егоркин В.С., Голуб А.В., Масленников С.И., Павлов А.Д., Гнеденков С.В. Функциональные материалы и покрытия на основе нанодисперсного политетрафторэтилена // Вестн. ДВО РАН. 2018. № 5. С. 77–85. doi: 10.25808/08697698.2018.201.5.011.
- Tian L., Jin E., Yu B., Sun H., Shang Y., Bing W. Novel anti-fouling strategies of live and dead soft corals (Sarcophyton trocheliophorum): combined physical and chemical mechanisms // J. Bionic Eng. 2020. Vol. 17. P. 677–685. https://doi.org/10.1007/s42235-020-0072-x.
- Tian L., Yin Y., Jin H., Bing W., Jin E., Zhao J., Ren L. Novel marine antifouling coatings inspired by corals // Materials Today Chemistry. 2020. Vol. 17. P. 100294. https://doi.org/10.1016/j.mtchem.2020.100294.
Дополнительные файлы
