Features of microstructure formation during continuous aging in granulable nickel-based alloys

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

The influence of continuous aging on the microstructure of the granulated heat-resistant nickel-based alloy EP741NP is considered. The use of continuous aging made it possible to increase the density of γ´-phase particles, reducing their size and the degree of coagulation inside the grains, and to strengthen the boundaries with carbide and boride compounds.

全文:

受限制的访问

作者简介

D. Eliseev

«GIREDMET»

编辑信件的主要联系方式.
Email: Tugor123@yandex.ru
俄罗斯联邦, Moskow

参考

  1. Reed, R.C. The superalloys (Fundamentals and applications) / R.C. Reed. – UK : Cambridge Academ., 2008. 392 p.
  2. Donachie, M.J. Superalloys : Metals handbook desk edition / M.J. Donachie, S.J. Donachie ; 2nd ed. – ASM Intern., 1999. 414 p.
  3. Pollock, T. Nickel-based superalloys for advanced turbine engines : chemistry, microstructure, and properties / T. Pollock, S. Tin // J. Propulsion and Power. 2006. V.22. №2. P.361–374.
  4. Mughrabi, H. Microstructural aspects of high temperature deformation of monocrystalline nickel base superalloys : some open problems / H. Mughrabi // Mater. Sci. Tech. 2009. V.25. №2. P.191–204.
  5. Морозова, Г.И. Феномен γ´-фазы в жаропрочных никелевых сплавах / Г.И. Морозова // ДАН. 1992. Т.325. №6. С.1193–1197 – (Morozova, G.I. Phenomenon of γ´-phases in heat-resistant nickel alloys / G.I. Morozova // Reports of the Academy of Sciences. 1992. V.325. №6. P.1193–1197.)
  6. Safari, J. On the heat treatment of Rene-80 nickel-base superalloy / J. Safari, S. Nategh // J. Mater. Proc. Tech. 2006. V.176. P.240–250.
  7. Monajati, H. The influence of heat treatment conditions on γ´ characteristics in Udimet 720 / H. Monajati, M. Jahazi, R. Bahrama, S. Yue // Mater. Sci. Eng. : A. 2004. V.373. P.286–293.
  8. Fuchs, G.E. Solution heat treatment response of a third generation single crystal Ni-base superalloy / G.E. Fuchs // Mater. Sci. Eng. : A. 2001. V.300. P.52–60.
  9. Miller, M.K. Stability of г´ precipitates in a PWA1480 alloy / M.K. Miller, S.S. Babu, J.M. Vitek // Intermetalic. 2007. V.15. P.757–766.
  10. John, H.S. Thermal characterization of a Ni-based superalloy / H.S. John, A. Ramon, L.M. Jose // Thermochimica Acta. 2002. V.392–393. P.295–298.
  11. Lu, H. Effects of heat treatment on the microstructure and properties of a cast nickel-based high-Cr superalloy / Lu H., Yang M., Zhou L., Ma, Z., Cui B., Yin F., Li D. // Metals. 2022. V.12. №12. Art.2176. https://doi.org/10.3390/met12122176
  12. Li, J. Effect of solution cooling rate on microstructure evolution and mechanical properties of Ni-based superalloy ATI718Plus / J. Li, R. Ding, Q. Guo, C. Li, Y. Liu, Z. Wang, H. Li, C. Liu // Mater. Sci. Eng. : A. 2021. V.812. Art.141113. https://doi.org/10.1016/j.msea.2021.141113
  13. Dye, D. Characterization and modeling of quenching-induced residual stresses in the nickel-based superalloy IN718 / D. Dye, K.T. Conlon, R.C. Reed // Met. Mater. Trans. A. 2004. V.35. P.1703–1713.
  14. Mao, J. Quench cracking characterization of superalloys using fracture mechanics approach / J. Mao, K.-M. Chang, D.U. Furrer // Superalloy, Proceeding of 9th international symposium on superalloys, Seven Springs. 2000. P.109–116.
  15. Mao, J. An investigation on quench cracking behavior of superalloy Udimet 720LI using a fracture mechanics approach / J. Mao, V.L. Keefer, K.-M. Chang, D. Furrer // J. Mater. Eng. Perform. 2000. V.9. №2. P.204–214.
  16. Milenkovic, S. Effect of the cooling rate on microstructure and hardness of MAR-M247 Ni-based superalloy/ S. Milenkovic, I. Sabirov, J. Llorca // Mater. Lett. 2012. V.73. P.216–219.
  17. Papadaki, C. On the dependence of γ´ precipitate size in a nickel-based superalloy on the cooling rate from super-solvus temperature heat treatment / C. Papadaki, W. Li, A.M. Korsunsky // Materials. 2018. V.11. Art.1528. https://doi.org/10.3390/ma11091528
  18. Masoumi, F. Kinetics and mechanisms of γ´ reprecipitation in a Ni-based superalloy/ F. Masoumi, D. Shahriari, M. Jahazi [et al.] // Sci. Reports. 2016. V.6. Art.28650. https://doi.org/10.1038/srep28650
  19. Sajjadi, S.A. Effects of cooling rate on the microstructure and mechanical properties of the Ni-base superalloy UDIMET 500 / S.A. Sajjadi, H.R. Elahifar, H. Farhangi // J. Alloys Comp. 2008. V.455. №1–2. P.215–220.
  20. Bassini, E. Study of the effects of aging treatment on Astroloy processed via hot isostatic pressing / E. Bassini, G. Cattano, G. Marchese, S. Biamino, D. Ugues, M. Lombardi, G. Vallillo, B. Picque // Materials. 2019. V.12. Art.1517. https://doi.org/10.3390/ma12091517
  21. Perez, M. Implementation of classical nucleation and growth theories for precipitation / M. Perez, M. Dumont, D. Acevedo-Reyes // Acta Materialia. 2008. V.56. P.2119–2132.
  22. Пат. RU 2433201. Способ термической обработки сплавов на никелевой основе / Еременко В.И., Фаткуллин О.Х., Фурашов А.С., Фаткуллин С.И., Щукарев А.К. ; 10.11.2011. – (Pat. RU 2433201. Eremenko V.I., Fatkullin O. Kh., Furashov A.S., Fatkullin S.I., Shchukarev A.K. Method of heat treatment of nickel-based alloys ; 10.11.2011.)
  23. Garosshen, T.J. Low temperature carbide precipitation in a nickel base superalloy / T.J. Garosshen, G.P. McCarthy // Met. Trans. A. 1985. V.16. P.1213–1223.
  24. Kvapilova, M. Creep behaviour and life assessment of a cast nickel – base superalloy MAR-M247 / M. Kvapilova, J. Dvorak, P. Kral, K. Hrbacek, V. Sklenicka // High Temperature Mater. Processes. 2019. V.38. V.590–600.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of heat treatment cycles: a – first temperature cycle 293 → 1483 → 293 → 1183 → → 973 → 1073 → 293; b – second temperature cycle 293 → 1483 → 293 → 1143 → → 923 → 1023 → 293; c – third temperature cycle 293 → 1483 → 293 → 1183 → → 293 → 1023 → 293 → 973 → 293; – ⋅ – solvus line Ts (temperature of complete dissolution). Temperature is given in Kelvin

下载 (355KB)
3. Fig. 2. General view and microstructure of samples made of EP741NP alloy at ×2000 magnification that underwent heat treatment in different modes: a, b – first temperature cycle; c, d – second temperature cycle; e, f – third temperature cycle

下载 (11MB)
4. Fig. 3. Microstructure of EP741NP alloy samples at ×4000 magnification after heat treatment in different modes: a, c – first temperature cycle; b, d – second temperature cycle; e, f – third temperature cycle

下载 (9MB)
5. Fig. 4. Microstructure of EP741NP alloy samples at ×8000 magnification after heat treatment in different modes: a, b – first temperature cycle; c, d – second temperature cycle; e, f – third temperature cycle

下载 (6MB)
6. Fig. 5. Topology of the formed phases in the microstructure of samples made of EP741NP alloy at ×8000 magnification that underwent heat treatment in different modes: a – first temperature cycle; b – second temperature cycle; c – third temperature cycle

下载 (5MB)

版权所有 © Russian Academy of Sciences, 2025