Analysis of lead and zinc selective extraction process from EAF dust during carbothermic reduction

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The selective carbothermic reduction process of lead and zinc oxides from electric arc furnace (EAF) dust in the laboratory horizontal tubular electric furnace in an argon medium with excessive consumption of reducing agent (20 wt.%) during step heating with an exposure for 1 hour at each stage is analyzed. It is established that successive heating and exposure of EAF dust and a reducing agent mixture at temperatures of 1100 and 1200 °C led to the removal of 96.8 and 99.9 rel.% of lead and zinc respectively from the dust. At the same time, iron content in the residue increased to 61.7 wt.%. It is calculated that the introduction of 15.5 wt.% carbon as a reducing agent is sufficient for the reduction of oxides in the considered EAF dust sample. It is experimentally confirmed that when condensate is deposited directly on gas outlet tube in the furnace in an inert medium, the product obtained is mainly in metallic form, while cooling the condensate in traps outside the furnace leads to the formation of lead and zinc oxides, which indicates the oxidation of the material during condensation with air access. The data of X-ray spectral microanalysis of condensate obtained in the furnace in an inert medium indicated the possibility of evaporation from EAF dust no more than 25 rel.% of lead oxide in the gas phase without prior reduction, as well as the fact that lead selective extraction from EAF dust with minimal associated zinc extraction should be carried out at temperatures below 1100 °C.

Толық мәтін

Рұқсат жабық

Авторлар туралы

N. Podusovskaya

Baikov Institute of Metallurgy and Materials Science RAS

Хат алмасуға жауапты Автор.
Email: npodusovskaya@imet.ac.ru
Ресей, Moscow

O. Komolova

Baikov Institute of Metallurgy and Materials Science RAS

Email: npodusovskaya@imet.ac.ru
Ресей, Moscow

K. Grigorovich

Baikov Institute of Metallurgy and Materials Science RAS

Email: npodusovskaya@imet.ac.ru
Ресей, Moscow

K. Demin

Baikov Institute of Metallurgy and Materials Science RAS

Email: npodusovskaya@imet.ac.ru
Ресей, Moscow

K. Anisonyan

Baikov Institute of Metallurgy and Materials Science RAS

Email: npodusovskaya@imet.ac.ru
Ресей, Moscow

Әдебиет тізімі

  1. World steel in figures. 2024 [Электронный ресурс] / World Steel Association – URL: https://worldsteel.org/wp-content/uploads/World-Steel-in-Figures-2024.pdf. – (World steel in figures. 2024 [Electronic resource] / World Steel Association – URL: https://worldsteel.org/wp-content/uploads/World-Steel-in-Figures-2024.pdf.)
  2. Parsa Khanmohammadi Hazaveh. Purification of the leaching solution of recycling zinc from the hazardous electric arc furnace dust through an as-bearing jarosite / Parsa Khanmohammadi Hazaveh, Saeid Karimi, Fereshteh Rashchi, Saeed Sheibani // Ecotoxicology and Environmental Safety. 2020. V.202. Art.110893.
  3. Trifunović, V. Investigation of hazardous waste. A case study of electric arc furnace dust characterization / V. Trifunović, S. Milić, L. Avramović, R. Jonović, V. Gardić, S. Đorđievski, Silvana Dimitrijević // Investigation of hazardous waste. 2022. V.76. Is.4. P.237–249.
  4. Топоркова, Ю.И. Обзор методов переработки пылей электродуговой плавки / Ю.И. Топоркова, Д. Блудова, С.В. Мамяченков, О.С. Анисимова // Металлургия и материаловедение. 2021. Т.25. №5. С.643–680. – (Toporkova, Yu.I. A review of processing methods for electric arc furnace dust / Yu.I. Toporkova, D. Bludova, S.V. Mamyachenkov, O.S. Anisimova // Metallurgy and materials science. 2021. V.25. №5. P.643–680.)
  5. Романов, П.С. Рециклинг отходов металлургической промышленности как способ сбережения природных ресурсов и снижения экологической напряженности / П.С. Романов, И.П. Романова // Электр. научно-практический журнал «Синергия». 2016. №2. С.94–99. – (Romanov, P.S. Metals industry waste recycling as a way of preservation of natural resources and reduce environmental stress / P.S. Romanov, I.P. Romanovа // Electr. sci. pract. journal «Synergy». 2016. №2. P.94–99.)
  6. Kaya, M. Critical review on secondary zinc resources and their recycling technologies / M. Kaya, Sh. Hussaini, S. Kursunoglu // Hydrometallurgy. 2020. Art.105362.
  7. Jie Wang. Pyrometallurgical recovery of zinc and valuable metals from electric arc furnace dust – A review / Jie Wang, Yingyi Zhang, Kunkun Cui, Tao Fu, Jianjun Gao, Shahid Hussain, Tahani Saad AlGarni // Journal of Cleaner Production. 2021. Art.126788
  8. Подусовская, Н.В. Изучение селективного извлечения свинца и цинка из пыли ДСП при нагреве в печах сопротивления в токе аргона / Н.В. Подусовская, О.А. Комолова, К.В. Григорович, А.В. Павлов, В.В. Аксенова, Б.А. Румянцев, М.В. Железный // Известия высших учебных заведений. Черная металлургия. 2023. Т.66. №3. С.344–355. – (Podusovskaya, N.V. Lead and zinc selective extraction from EAF dust while heating in resistance furnace with flowing argon / N.V. Podusovskaya, O.A. Komolova, K.V. Grigorovich, A.V. Pavlov, V.V. Aksenova, B.A. Rumyantsev, M.V. Zheleznyi // Izvestiya. Ferrous Metallurgy. 2023. V.66. №3. P.344–355.)
  9. Полянский, Н.Г. Аналитическая химия элементов: Свинец / Н.Г. Полянский. – М. : Наука, 1986. 357 с. – (Polyansky, N.G. Analytical chemistry of elements: Lead / N.G. Polyansky. – Moscow : Nauka, 1986. 357 p.)
  10. Живописцев, В.П. Аналитическая химия элементов: Цинк / В.П. Живописцев, Е.А. Селезнева. М. : Наука, 1975. 106 с. – (Zhivopistsev, V.P. Analytical chemistry of elements: Zinc / V.P. Zhivopistsev, E.A. Selezneva. М. : Nauka, 1975. 106 p.)
  11. Большая Российская энциклопедия. Оксид цинка [Электронный ресурс] – URL: https://bigenc.ru/c/oksid-tsinka-88583a. – (The Great Russian Encyclopedia. Zinc oxide [Electronic resource] – URL: https://bigenc.ru/c/oksid-tsinka-88583a.)
  12. Большая Российская энциклопедия. Оксиды свинца [Электронный ресурс] – URL: https://bigenc.ru/c/oksidy-svintsa-fa0fdb. – (The Great Russian Encyclopedia. Lead oxides [Electronic resource] – URL: https://bigenc.ru/c/oksidy-svintsa-fa0fdb.)
  13. Справочник химика (в 7 томах) / Редкол.: Никольский Б.П. и др. 3-е изд., испр. – Л. : Химия, 1971. Т.2. 1168 с. – (Handbook of a chemist (in 7 volumes) / Edited by Nikolsky B.P. et al. 3rd ed., corrected. – Leningrad : Chemistry, 1971. V.2. 1168 p.)
  14. ГОСТ 10262–73. Цинка окись. Технические условия. – М. : Издательство стандартов, 1989. 17 с. – (GOST 10262–73. Zinc oxide. Technical specifications. – Moscow : Publishing House of Standards, 1989. 17 p.)
  15. Рабинович, В.А. Краткий химический справочник / В.А. Рабинович, З.Я. Хавин. – Л. : Химия, 1977. 376 с. – (Rabinovich, V.A. A brief chemical reference / V.A. Rabinovich, Z.Ya. Khavin. – Leningrad : Chemistry, 1977. 376 p.)

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Scheme of the laboratory horizontal tubular electric furnace: 1 – furnace body; 2 – refractory lining; 3 – quartz reactor; 4 – connector for supplying inert gas to the reactor; 5 – quartz boat with sample; 6 – programmable temperature controller; 7 – gas outlet tube (*the shaded area shows the metal foil formation zone); 8 – Bunsen flask; 9 – copper plate; 10 – Drexel bottle with 35 wt.% nitric acid solution; 11 – Drexel bottle; 12 – exhaust probe; 13 – thermocouple in a protective case

Жүктеу (851KB)
3. Fig. 2. The appearance of the formed metal foil (a) and the condensate in the trap (b)

Жүктеу (1MB)
4. Fig. 3. XRD patterns of the initial EAF dust sample (a) and the post-stepwise-heating residue (b)

Жүктеу (2MB)
5. Fig. 4. Secondary electron micrographs showing the foil surface formed on the furnace tube at various magnifications: a–d – region 1; e–h – region 2; the locations selected for chemical composition analysis are indicated in panels d and h

Жүктеу (6MB)
6. Fig. 5. Maps of the characteristic X-ray emission intensity distribution of the elements contained in the foil (region 1)

Жүктеу (4MB)
7. Fig. 6. Maps of the characteristic X-ray emission intensity distribution of the elements contained in the foil (region 2) at different magnifications

Жүктеу (7MB)
8. Fig. 7. Secondary electron micrographs (at different magnifications) a–c of the surface of the condensate 1 trapped in the flask at the furnace outlet, and a back-reflected electrons micrograph d of the analyzed area indicating the points at which the elemental composition is determined (see table 7)

Жүктеу (3MB)
9. Fig. 8. Maps of the characteristic X-ray emission intensity distribution of the elements contained in the condensate 1 trapped at the furnace outlet

Жүктеу (7MB)
10. Fig. 9. Secondary electron micrographs (at different magnifications) a–c of the surface of the condensate 2 trapped in the flask at the furnace outlet, and a back-reflected electrons micrograph d of the analyzed area indicating the points at which the elemental composition is determined (see table 8)

Жүктеу (3MB)
11. Fig. 10. Maps of the characteristic X-ray emission intensity distribution of the elements contained in the condensate 2 trapped at the furnace outlet

Жүктеу (5MB)
12. Fig. 11. Micrographs of the surface of the EAF dust residue after heating and exposure at temperatures of 1100 and 1200 °C, obtained in secondary (a, b, d) and back-reflected (c, e, f) electrons for region 1 (a–c) and region 2 (d–f). The analyzed regions and points where the elemental composition were determined: c – region 1; d–e – region 2

Жүктеу (5MB)
13. Fig. 12. Maps of the characteristic X-ray emission intensity distribution of the elements contained in EAF dust after heating and exposure at temperatures of 1100 and 1200 °C: a – region 1; b – region 2

Жүктеу (7MB)

© Russian Academy of Sciences, 2025