ABA-degrading strains of bacteria of the genus Pseudomonas and their influence on wheat growth

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Three new representatives of the genus Pseudomonas have been identified that are capable of utilizing abscisic acid and positively influencing the growth and development of plants. Their physiological and biochemical properties have been studied. Based on the analysis of the 16S rRNA gene, they were identified as P. veronii IB K11-1 (99.86% similarity), P. frederiksbergensis IB Ta10m (100%), strain TaE2 was assigned to Pseudomonas sp. It was found that bacteria, when growing on a mineral-salt medium with ABA, reduced the hormone content by 50-60% with an increase in population density by two orders of magnitude. In a laboratory experiment, it was shown that the introduction of bacterial biomass (108 CFU/g of substrate) into the rhizosphere of wheat plants 10 days after treatment led to a decrease in the abscisic acid content in the roots by 18–30% and an increase in plant weight by up to 30%. Thus, new strains of growth-stimulating ABA-degrading bacteria have been identified and characterized for the first time, which may be promising for the creation of biological products that increase plant resistance to biotic and abiotic stresses.

Full Text

Restricted Access

About the authors

A. S. Ryabova

Ufa Federal Research Center of the Russian Academy of Sciences RAS

Email: alenarya@rambler.ru

Ufa Institute of Biology

Russian Federation, Ufa, 450054

L. Yu. Kuzmina

Ufa Federal Research Center of the Russian Academy of Sciences RAS

Author for correspondence.
Email: alenarya@rambler.ru

Ufa Institute of Biology

Russian Federation, Ufa, 450054

E. A. Gilvanova

Ufa Federal Research Center of the Russian Academy of Sciences RAS

Email: alenarya@rambler.ru

Ufa Institute of Biology

Russian Federation, Ufa, 450054

N. F. Galimsyanova

Ufa Federal Research Center of the Russian Academy of Sciences RAS

Email: alenarya@rambler.ru

Ufa Institute of Biology

Russian Federation, Ufa, 450054

E. V. Martynenko

Ufa Federal Research Center of the Russian Academy of Sciences RAS

Email: alenarya@rambler.ru

Ufa Institute of Biology

Russian Federation, Ufa, 450054

L. B. Vysotskaya

Ufa Federal Research Center of the Russian Academy of Sciences RAS

Email: alenarya@rambler.ru

Ufa Institute of Biology

Russian Federation, Ufa, 450054

G. R. Kudoyarova

Ufa Federal Research Center of the Russian Academy of Sciences RAS

Email: alenarya@rambler.ru

Ufa Institute of Biology

Russian Federation, Ufa, 450054

References

  1. Samain E., Ernenwein C., Aussenac T., Selim S. // Physiol. Mol. Plant Pathol. 2022. V. 119. P. 1–12. https://doi.org/10.1016/j.pmpp.2022.101830
  2. Chieb M., Gachomo E.W. // BMC Plant Biol. 2023. V. 23. N. 407. P. 1–23. https://doi.org/10.1186/s12870-023-04403-8
  3. Burkhanova G.F., Veselova S.V., Sorokan A.V., Blagova D.K., Nuzhnaya T.V., Maksimov I.V. // Appl. Biochem. Microbiol. 2017. V. 53. № 3. P. 346–352. https://doi.org/10.1134/S0003683817030048
  4. Kudoyarova G., Arkhipova T., Korshunova T., Bakaeva M., Loginov O., Dodd I.C. // Front. Plant Sci. 2019. V. 10. № 1368. P. 1–11. https://doi.org/10.3389/fpls.2019.01368
  5. Kudoyarova G.R., Vysotskaya L.B., Arkhipova T.N., Kuzmina L.Yu., Galimsyanova N.F., Sidorova L.V. et al. // Acta Physiol. Plant. 2017. V. 39. № 253. P. 1–8. https://doi.org/10.1007/s11738-017-2556-9
  6. Liu F., Xing S., Ma H., Du Z., Ma B. // Appl. Microbiol. Biotechnol. 2013. V. 97. P. 9155–9164. https://doi.org/10.1007/s00253-013-5193-2
  7. Kang S.M., Khan A.L., Hamayun M., Hussain J., Joo G.J., You Y.H., Kim J.G., Lee I.J. // J. Microbiol. 2012. V. 50. P. 902–909.
  8. Chen L., Dodd I.C., Theobald J.C., Davies W.J., Belimov A.A. // J. Exp. Bot. 2013. V. 64. № 69. P. 1565–1573. https://doi.org/10.1093/jxb/ert031
  9. Glick B.R. // Microbiol. Res. 2014. V. 169. № 1. P. 30–39. https://doi.org/10.1016/j.micres.2013.09.009
  10. Chen K., Li G.J., Bressan R.A., Song C., Song C.P., Zhu J.K., Zhao Y. // J. Integr. Plant. Biol. 2020. V. 62. № 1. P. 25–54. https://doi.org/10.1111/jipb.12899
  11. Максимов И.В. // Физиология растений. 2009. Т. 56. № 6. С. 824–835.
  12. Akhiyarova G., Veselov D., Ivanov R., Sharipova G., Ivanov I., Dodd I.C., Kudoyarova G. // Int. J. Plant Biol. 2023. V. 14. № 1. P. 77–90. https://doi.org/10.3390/ijpb14010007
  13. Vysotskaya L., Martynenko E., Ryabova A., Kuzmina L., Starikov S., Chetverikov S. et al. // Biomolecules. 2023. V. 13. № 1668. P. 1–14. https://doi.org/10.3390/biom13111668
  14. Hartung W., Sauter A., Turner N.C., Fillery I., Heilmeier H. // Plant and Soil. 1996. V. 184. №. 1. P. 105–110. https://doi.org/10.1007/BF00029279
  15. Jiang F., Chen L., Belimov A.A., Shaposhnikov A.I., Gong F., Meng X. et al. // J. Exp. Bot. 2012. V. 63. №. 18. P. 6421–6430. https://doi.org/10.1093/jxb/ers301
  16. Akhyamova Z., Martynenko E., Arkhipova T., Seldimirova O., Galin I., Belimov A. et al. // Microorganisms. 2022. V. 11. №. 5. P. 1–13. https://doi.org/10.3390/microorganisms11051227
  17. Hasegawa S., Poling S.M., Maier V.P., Bennett R.D. // Phytochemistry. 1984. V. 23. №. 12. P. 2769–2771.
  18. Belimov A.A., Dodd I.C., Safronova V.I., Dumova V.A., Shaposhnikov A.I., Ladatko A.G., Davies W.J. // Plant Physiol Biochem. 2014. V. 74. P. 84–91. https://dx.doi.org/10.1016/j.plaphy.2013.10.032
  19. Ермеккалиев Т.С., Гоголева Н.Е., Гоголев Ю.В., Коннова Т.А., Шевченко В.П., Нагаев И.Ю. и др. // Химико-фармацевтический журнал. 2021. Т. 55. № 7. С. 60–64. https://doi.org/10.30906/0023-1134-2021-55-7-60-64
  20. Yuzikhin O.S., Gogoleva N.E., Shaposhnikov A.I., Konnova T.A., Osipova E.V., Syrova D.S. et al. // Biomolecules. 2021. V. 11. №. 3. P. 1–15. https://doi.org/10.3390/biom11030345
  21. Yuzikhin O.S., Shaposhnikov A.I., Konnova T.A., Syrova D.S., Hamo H., Ermekkaliev T.S. et al. // Biomolecules. 2022. V. 12. №. 10. P. 1–20. https://doi.org/10.3390/biom12101508
  22. Рябова А.С., Кузьмина Л.Ю., Мартыненко Е.В., Четвериков С.П., Мильман П.Ю., Высоцкая Л.Б. // Экобиотех. 2023. Т. 6. № 3. С. 190–199. https://doi.org/10.31163/2618-964X-2023-6-3-190-199
  23. Герхардт Ф. Методы общей бактериологии. М.: Мир, 1984. Т. 3. 264 с.
  24. Vysotskaya L.B., Korobova, A.V., Veselov S.Y., Dodd I.C., Kudoyarova G.R. // Funct. Plant Biol. 2009. V. 36. №. 1. P. 66–72. https://doi.org/10.1071/FP08187
  25. Elomari M., Coroler L., Hoste B., Gillis M., Izard D., Leclerc H. // Int. J. Syst. Bacteriol. 1996. V. 46. №. 4. P. 1138–1144. https://doi.org/10.1099/00207713-46-4-1138
  26. Andersen S.M., Johnsen K., Sørensen J., Nielsen P., Jacobsen C.S. // Int. J. Syst. Evol. Microbiol. 2000. V. 50. №. 6. P. 1957–1964. https://doi.org/10.1099/00207713-50-6-1957

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. ABA content (ng/g fresh weight) in the roots (a) and the weight of wheat plants (b) 10 days after planting three-day-old seedlings in pots and adding a suspension (up to 108 CFU/g soil) of the ABA-degrading strains Pseudomonas veronii IB K11-1, P. frederiksbergensis IB Ta10m and Pseudomonas sp. IB TaE2 to the rhizosphere; control – non-inoculated plants. Mean values ​​± standard errors are shown. Different letters indicate significantly different values ​​(P ≤ 0.05, ANOVA, Duncan's test).

Download (188KB)
3. Fig. 2. Auxin content (ng/ml) in the culture fluid of Pseudomonas veronii IB K11-1, P. frederiksbergensis IB Ta10m and Pseudomonas sp. IB TaE2 strains on King B medium on the 3rd day of cultivation. Designations as in Fig. 1.

Download (99KB)

Copyright (c) 2024 Russian Academy of Sciences