Effect of Chitosan-Caffeic Acid Conjugate and Bacillus subtilis Bacteria on the Protective Reactions in PVY-Infected Plants Under Soil Water Deficit

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The effect of chitosan-caffeic acid (Ch-CA) conjugate separately and in combination with a mixture of Bacillus subtilis 47 on the plant defense against PVY under optimal hydration and water deficit in soil was evaluated. The treatments of Ch-CA and Ch-CA+B. subtilis 47 on healthy potato plants under optimal soil moisture conditions demonstrated the accumulation of proline and phenolic compounds, as well as the activation of PPO, which collectively led to an increase in the nonspecific plant defenses. The application of Ch-CA resulted in a reduction of PVY infection in potato plants grown under both optimal and soil moisture-deficient conditions and led to an increase the potato mini-tuber’s mass. The combination of B. subtilis 47 and Ch-CA proved effective in reducing the infection level exclusively under conditions of soil water deficit. It has been demonstrated that the primary factor influencing the development of resistance in potato plants to PVY under moisture-limiting conditions is associated with an elevated peroxidase activity and alterations in antioxidant activity within plant tissues.

Texto integral

Acesso é fechado

Sobre autores

J. Kalatskaja

V.F. Kuprevich Institute of Experimental Botany, the National Academy of Sciences of Belarus

Autor responsável pela correspondência
Email: kalatskayaj@mail.ru
Belarus, Minsk, 220072

L. Yarullina

Institute of Biochemistry and genetics - separate structural subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kalatskayaj@mail.ru
Rússia, Ufa, 450054

N. Yalouskaya

V.F. Kuprevich Institute of Experimental Botany, the National Academy of Sciences of Belarus

Email: kalatskayaj@mail.ru
Belarus, Minsk, 220072

G. Burkhanova

Institute of Biochemistry and genetics - separate structural subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kalatskayaj@mail.ru
Rússia, Ufa, 450054

Е. Rybinskaya

V.F. Kuprevich Institute of Experimental Botany, the National Academy of Sciences of Belarus

Email: kalatskayaj@mail.ru
Belarus, Minsk, 220072

E. Zaikina

Institute of Biochemistry and genetics - separate structural subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kalatskayaj@mail.ru
Rússia, Ufa, 450054

I. Ovchinnikov

V.F. Kuprevich Institute of Experimental Botany, the National Academy of Sciences of Belarus

Email: kalatskayaj@mail.ru
Belarus, Minsk, 220072

V. Tsvetkov

Ufa University of Science and Technology

Email: kalatskayaj@mail.ru
Rússia, Ufa, 450076

K. Herasimovich

V.F. Kuprevich Institute of Experimental Botany, the National Academy of Sciences of Belarus

Email: kalatskayaj@mail.ru
Belarus, Minsk, 220072

E. Cherepanova

Institute of Biochemistry and genetics - separate structural subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences

Email: kalatskayaj@mail.ru
Rússia, Ufa, 450054

O. Ivanov

V.F. Kuprevich Institute of Experimental Botany, the National Academy of Sciences of Belarus

Email: kalatskayaj@mail.ru
Belarus, Minsk, 220072

K. Hileuskaya

Institute of Chemistry of New Materials, the National Academy of Sciences of Belarus

Email: kalatskayaj@mail.ru
Belarus, Minsk, 220141

V. Nikalaichuk

Institute of Chemistry of New Materials, the National Academy of Sciences of Belarus

Email: kalatskayaj@mail.ru
Belarus, Minsk, 220141

Bibliografia

  1. Saeed Q., Xiukang W., Haider F.U., Kučerik J., Mumtaz M.Z., Holatko J., et al. // Int. J. Mol. Sci. 2021. V. 22. P. 10529. https://doi.org/10.3390/ ijms221910529
  2. Vilvert E., Stridh L., Andersson B., Olson Å., Aldén L., Berlin A. // Environmental Evidence. 2022. V. 11. № 6. P. 1–8. https://doi.org/10.1186/s13750-022-00259-x
  3. Ramegowda V., Senthil-Kumar M. // J. Plant Physiol. 2015. V. 176. P. 47–54. https://doi.org/10.1016/j.jplph.2014.11.008
  4. Zhang H., Sonnewald U. // The Plant Journal. 2017. V. 90. P. 839–855. https://doi.org/10.1111/tpj.13557
  5. Hamooh B.T., Sattar F.A., Wellman G., Mousa M.A.A. // Plants. 2021. V. 10. P. 98. https://doi.org/10.3390/plants10010098
  6. Rubio L., Galipienso L., Ferriol I. // Front. Plant Sci. 2020. V. 11. P. 1092. https://doi.org/doi: 10.3389/fpls.2020.01092
  7. Jones R.A. // Plants. 2021. V. 10. P. 233. https://doi.org/10.3390/plants10020233
  8. Riseh R.S., Hassanisaadi M., Vatankhah M., Babaki S.A., Barka E.A. // Int. J. Biol. Macromol. 2022. V. 220 P. 998–1009. https://doi.org/10.1016/j.ijbiomac.2022.08.109
  9. Shah A., Nazari M., Antar M., Msimbira L.A., Naamala J., Lyu D., et al. // Front. Sustain. Food Syst. 2021. V. 5. P. 667546. https://doi.org/10.3389/fsufs.2021.667546
  10. Vurukonda S.S.K.P., Vardharajula S., Shrivastava M., SkZ A. // Microbiological Research. 2016. V. 184. P. 13–24. https://doi.org/10.1016/j.micres.2015.12.003
  11. Maksimov I.V, Abizgil’dina R.R., Pusenkova L.I. // Appl. Biochem. Microbiol. 2011. V 47. № 4 P. 333–345. https://doi.org/10.1134/S0003683811040090
  12. Miljaković D., Marinković J., Balešević-Tubić S. // Microorganisms. 2020. V. 8. № 7. P. 1037. https://doi.org/10.3390/microorganisms8071037
  13. Yarullina L.G., Kalatskaja J.N., Cherepanova E.A., Yalouskaya N.A., Tsvetkov V.O., Ovchinnikov I.A., et al. // Appl. Biochem. Microbiol. 2023. V. 59. № 5. P. 549–560. https://doi.org/10.1134/s0003683823050186
  14. Maksimov I.V., Singh B.P., Cherepanova E.A., Burkhanova G.F., Khairullin R.M. // Appl. Biochem. Microbiol. 2020. V. 56. № 1. P. 15–28. https://doi.org/10.1134/s0003683820010135
  15. Veselova S.V., Sorokan A.V., Burkhanova G.F., Rumyantsev S.D., Cherepanova E.A., Alekseev V.Y., et al. // Biomolecules. 2022. V. 12. P. 288. https://doi.org/doi: 10.3390/biom12020288
  16. Amine R., Tarek C., Hassane E., Noureddine E.H., Khadija O. // Molecules. 2021. V. 26. № 4. P. 1117. https://doi.org/10.3390/molecules26041117
  17. Chirkov S.N. // Appl. Biochem. Microbiol. 2002. V. 38. № 1. P. 1–8. https://doi.org/10.1023/A:1013206517442
  18. He X., Xing R., Liu S., Qin Y., Li K., Yu H., Li P. // Drug and Chemical Toxicology. 2019. V. 44. № 4. P. 335–340.
  19. Novikova I.I., Popova E.V., Krasnobaeva I.L., Kovalenko N.M. // Sel’skokhozyaistvennaya Biologiya (Agricultural Biology). 2021. V. 56. P. 511–522.
  20. Yarullina L.G., Cherepanova E.A., Burkhanova G.F., Sorokan A.V., Zaikina E.A., Tsvetkov V.O., et al. // Microorganisms. 2023. V. 11. № 8. P. 1993. https://doi.org/10.3390/microorganisms11081993
  21. Dutta J., Tripathi S., Dutta P.K. // Food Science and Technology International. 2012. V.18. №1. P.3–34. https://doi.org/ doi: 10.1177/1082013211399195
  22. Kumar S., Abedin M.M., Singh A.K., Das S. // Plant Phenolics in Sustainable Agriculture. 2020. V. 1. P. 517–532. https://doi.org/10.1007/978-981-15-4890-1_22
  23. İlyasoğlu H., Guo Z. // Food Bioscience. 2019. V. 29. P. 118–125. https://doi.org/10.1016/j.fbio.2019.04.007
  24. Nedved E.L., Kalatskaja J.N., Ovchinnikov I.A., Rybinskaya E.I., Kraskouski A.N., Nikalaichuk V.V., et al. // Appl. Biochem. Microbiol. 2022. V. 58. № 1. P. 69–76. https://doi.org/10.1134/s0003683822010069
  25. Nikalaichuk V., Hileuskaya K., Kraskouski A., Kulikouskaya V., Nedved H., Kalatskaja J., et al. // J. Appl. Polym. Sci. 2021. V. 139. № 14. P. 51884. https://doi.org/10.1002/app.51884
  26. Tenover F.C. // Eds Th. M. Schmidt. Encyclopedia of Microbiology. Academic Press. 2019. P. 166–175. https://doi.org/10.1016/B978-0-12-801238-3.02486-7
  27. Bindschedler L.V., Minibayeva F., Gardner S.L., Gerrish C., Davies D.R., Bolwell G.P. // New Phytol. 2001. V. 151. P. 185–194.
  28. Bates L.S., Waldren R.P., Teare J.D. // Plant and Soil. 1973. V. 39. № 1. P. 205–207. https://doi.org/10.1007/BF00018060
  29. Singleton V.L., Orthofer R., Lamuela-Raventos R.M. // Methods in Enzymology. 1999. V. 299. P. 152–178. https://doi.org/10.1016/S0076-6879(99)99017-1
  30. Kumar V.B.A., Kishor T.C.M., Murugan K. // Food Chemistry. 2008. V. 110 № 2. P. 328–333. https://doi.org/10.1016/j.foodchem.2008.02.006
  31. Boyarkin A.N. Determination of Peroxidase Activity. /Ed. A.L. Ermakov, Leningrad: Kolos, 1987. P. 41–43.
  32. Beyer W.F., Fridovich I. // Anal. Biochem. 1987. V. 161. № 2. P. 559–566. https://doi.org/10.1016/0003-2697(87)90489-1
  33. Nakano Y. Asada K. // Plant Cell Physiol. 1981. V. 22. № 5. P. 867 – 880. https://doi.org/10.1093/oxfordjournals.pcp.a076232
  34. Aono M., Kubo A., Saji H. // Plant Cell Physiol. 1991. V. 32. № 5. P. 691–697. https://doi.org/10.1093/oxfordjournals.pcp.a078132
  35. Тарчевский И.А., Егорова А.М. // Прикл. биохимия и микробиология. 2022. T. 58. № 4. С. 315–329. https://doi.org/10.31857/s055510992204016x
  36. Jia X., Rajib M., Yin H. // Current Pharmaceutical Design. 2020. V. 26. № 29. P. 3508–3521. https://doi.org/10.2174/1381612826666200617165915
  37. Chakraborty M., Hasanuzzaman M., Rahman M., Khan Md., Bhowmik P., Mahmud N.U., et. al. // Agriculture. 2020. V. 10. № 12. P. 624. https://doi.org/10.3390/agriculture10120624
  38. Siquet С., Paiva-Martins F., Lima J.L., Reis S., Borges F. // Free Radic. Res. 2006. V. 40. P. 433–442. https://doi.org/10.1080/10715760500540442
  39. Rivero R.M., Ruiz J.M., Garcia P.C., Lopez-Lcfebre L.R., Sanchez E., Romero L. // Plant Sci. 2001. V. 160. P. 315–321. https://doi.org/10.1016/S0168-9452(00)00395-2
  40. Yang X., Lan W., Lu M., Wang Z., Xie J. // LWT. 2022. V. 170. P. 114072. https://doi.org/10.1016/j.lwt.2022.114072
  41. Maslennikova D., Lastochkina O. // Plants. 2021. V.10. № 12. P. 2557. https://doi.org/10.3390/plants10122557
  42. Smirnoff N., Arnaud D. // New Phytologist. 2019. V. 221. № 3. P. 1197–1214. https://doi.org/10.1111/nph.15488
  43. Минибаева Ф.В., Гордон Л.Х. // Физиология растений. 2003. Т. 50. № 3. С. 459–464.
  44. Hernández J.A., Gullner G., Clemente-Moreno M.J., Künstler A., Juhász C., Díaz-Vivancos P., et.al. // Physiol. Mol. Plant Pathol. 2016. V. 94. P. 134–148. https://doi.org/10.1016/j.pmpp.2015.09.001

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Results of the assessment of the antibacterial activity of Hit-KK and chitosan against the Bacillus subtilis 47 strain: K – Bacillus subtilis 47 strain (Carphilus); 2 – Hit-KK 0.0125 mg/ml; 3 – Hit-KK 0.025 mg/ml; 4 –Hit-KK 0.05 mg/ml; 5 – chitosan 0.1 mg/ml; 6, 7, 8 – chitosan-based nanocomposites.

Baixar (285KB)
3. Fig. 2. The degree of infection of potato leaves with UVK without treatment (II), after treatment with Xit-KK (III) and a mixture of Xit-KK and B. subtilis 47 (IV): I – control – uninfected plants.

Baixar (94KB)
4. Fig. 3. The effect of treatments (I‒III) on the proline content (a), the content of phenolic compounds (b), and the activity of PFOA (c) in the leaves of healthy and UVC–infected potato plants under optimal moisture conditions and with water deficiency in the soil: I – control; II - treatment with HCV; III – treatment of Hit-KK + B. subtilis 47.

Baixar (446KB)
5. Fig. 4. The effect of treatments (I‒IV) on the content of hydrogen peroxide (a), SOD activity (b) and peroxidase activity (c) in the leaves of healthy and UVK–infected potato plants under optimal humidification conditions and with water deficiency in the soil: I – control; II - treatment with HCV; III – treatment of Hit-KK + B. subtilis 47.

Baixar (450KB)
6. 5. The effect of treatments (I‒III) on the activity of APO (a) and GR (b) in the leaves of healthy and UVK-infected potato plants under optimal moisture conditions and with water deficiency in the soil: I – control; II – treatment with Hit-KK; III – treatment with Hit-KK + B. subtilis 47.

Baixar (282KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024