2,2-dichlorovinulketones-based 5-chloro-3-styryl-1H-pyrazoles synthesis

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

Condensation of 4,4-dichlorobut-3-en-2-one with aromatic aldehydes in the presence of catalytic amounts of sulfuric acid leads to the formation of 1,1-dichloro-5-(4-R-phenyl)penta-1,4-diene-3-ones. The reaction of 1,4-dien-3-ones with hydrazines proceeds chemo- and regioselectively under mild conditions with the formation of ( E )-1-methyl-3-styryl-5-chloro-1 H -pyrazoles with a yield reaching 81%. 4-Bromo-1,1-dichloro-5-(4-methoxyphenyl)penta-1,4-dien-3-one reacts with dimethylhydrazine to give 3-[1-bromo-2-(4-methoxyphenyl)vinyl]-5chloro-1-methyl-1 H -pyrazole, which in the presence of KF in DMSO at 120°C forms 1-methyl-3-[(4-methoxyphenyl)ethynyl]-5-chloro-1 H -pyrazole with 69% yield. The structure of the synthesized compounds has been confirmed using IR, NMR spectroscopies, mass spectrometry, and elemental analysis.

Авторлар туралы

V. Kobelevskaya

A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS

Email: valkob@irioch.irk.ru

S. Zinchenko

A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS

A. Popov

A.E. Favorsky Irkutsk Institute of Chemistry, SB RAS

Әдебиет тізімі

  1. Marinescu M. Antibiotics. 2021, 10, 1-29. doi: 10.3390/antibiotics10081002
  2. Faria J.V., Vegi P.F., Miguita A.G.C., Silva dos Santos M., Boechat N., Bernardino A.M.R. Bioorg. Med. Chem. 2017, 25, 5891-5903. doi: 10.1016/j.bmc.2017.09.035
  3. Karrouchi K., Radi S., Ramli Y., Taoufik J., Mabkhot Y.N., Al-aizari F.A., Ansar M. Molecules. 2018, 23, 134. doi: 10.3390/molecules23010134
  4. Ansari A., Ali A., Asif M., Shamsuzzaman. New J. Chem. 2017, 41, 16-41. doi: 10.1039/c6nj03181a
  5. Khan M.F., Alam M.M., Verma G., Akhtar W., Akhter M., Shaquiquzzaman M. Eur. J. Med. Chem. 2016, 120, 170-201. doi: 10.1016/j.ejmech.2016.04.077
  6. Kücükgüzel Ş.G., Şekardeş S. Eur. J. Med. Chem. 2015, 97, 786-815. doi: 10.1016/j.ejmech.2014.11.059
  7. Bennani F.E., Doudach L., Gherrah Y., Ramli Y., Karrouchi K., Ansar M., Faouzi M.El. A. Bioorg. Chem. 2020, 97, 103470. doi: 10.1016/j.bioorg.2019.103470
  8. Silva V.L.M., Elguero J., Silva A.M.S. Eur. J. Med. Chem. 2018, 156, 394. doi: 10.1016/j.ejmech.2018.07.007
  9. Jeschke P. Eur. J. Org. Chem. 2022, e202101513. doi: 10.1002/ejoc.202101513
  10. Kashyap S., Singh R., Singh U.P. Coord. Chem. Rev. 2020, 417, 213369. doi: 10.1016/j.ccr.2020.213369
  11. Alkorta I., Claramunt R.M., Dies-Barra E., Elguero J., de la Hoz A., Lopez C. Coord. Chem. Rev. 2017, 339, 153-182. doi: 10.1016/j.ccr.2017.03.011
  12. Mukherjee R. Coord. Chem. Rev. 2000, 203, 151-218. doi: 10.1016/S0010-8545(99)00144-7
  13. Dias H.R.V., Lovely C.J. Chem. Rev. 2008, 108, 3223-3238. doi: 10.1021/cr078362d
  14. El Boutaybi M., Taleb A., Touzani R., Bahari Z. Mater. Today Proc. 2020, 31, 96-102. doi: 10.1016/j.matpr.2020.06.249
  15. El Boutaybi M., Taleb A., Touzani R., Bahari Z. Arab. J. Chem. Environ. Res. 2020, 07, 1-11.
  16. Pettinari C., Tăbăcaru A., Galli S. Coord. Chem. Rev. 2016, 307, 1-31. doi: 10.1016/j.ccr.2015.08.005
  17. Aysha T.A., Mohamed M.B. I., El-Sedik M.S., Youssef Y.A. Dyes Pigm. 2021, 196, 109795. doi: 10.1016/j.dyepig.2021.109795
  18. Demircali A., Karci F., Sari F. Colorat. Technol. 2021, 137, 280-291. doi: 10.1111/cote.12530
  19. Tao T., Zhao X.-L., Wang Y.-Y., Oian H.-F., Huang W. Dyes Pigm. 2019, 166, 226-232. doi: 10.1016/j.dyepig.2019.03.046
  20. Fustero S., Sánchez-Roselló M., Barrio P., Simón-Fuentes A. Chem Rev. 2011, 111, 6984-7034. doi: 10.1021/cr2000459
  21. Fustero S., Simón-Fuentes A., Sanz-Cervera J.F. Org. Prep. Proced. Int. 2009, 41, 253-290. doi: 10.1080/00304940903077832
  22. Janin Y.L. Chem. Rev. 2012, 112, 3924-3958. doi: 10.1021/cr200427q
  23. Abdelhamid I.A., Hawass M.A.E., Sanad S.M.H., Elwahy A.H.M. Arkivoc. 2021, i, 162-235. doi: 10.24820/ark.5550190.p011.404
  24. Abdelhamid I.A., Hawass M.A.E., Sanad S.M.H., Elwahy A.H.M. Arkivoc. 2021, ix, 42-74. doi: 10.24820/ark.5550190.p011.542
  25. Zhang Q., Hu B., Zhao Y., Zhao S., Wang Y., Zhang B., Yan S., Yu F. Eur. J. Org. Chem. 2020, 1154-1159. doi: 10.1002/ejoc.201901886
  26. Moon H.R., Yu J., Kim K.H., Kim J.N. Bull. Korean Chem. Soc. 2015, 36, 1189-1195. doi: 10.1002/bkcs.10225
  27. Almirante N., Cerri A., Fedrizzi G., Marazzi G., Santagostino M. Tetrahedron Lett. 1998, 39, 3287-3290. doi: 10.1016/S0040-4039(98)00472-9
  28. Adamo M.F.A., Adlington R.M., Baldwin J.E., Pritchard G. J., Rathmell R. E. Tetrahedron. 2003, 59, 2197-2205. doi: 10.1016/S0040-4020(03)00244-8
  29. Baldwin J.E., Pritchard G.E., Rathmell R.E. J. Chem. Soc., Perkin Trans. 1. 2001, 2906-2908. doi: 10.1039/b108645f
  30. Sherin D.R., Rajasekharan K.N. Arch. Pharm. Chem. Life Sci. 2015, 348, 908-914. doi: 10.1002/ardp.201500305
  31. Zona C., La Ferla B.L. Label Compd. Radiopharm. 2011, 54, 629-632. doi: 10.1002/jlcr.1907
  32. Shim J.S., Kim D.H., Jung H.J., Kim J.H., Lim D., Lee S.-K., Kim K.-W., Ahn J.W., Yoo J.-S., Rho J.-R., Shin J., Kwon H. J. Bioorg. Med. Chem. 2002, 10, 2439-2444. doi: 10.1016/S0968-0896(02)00116-5
  33. Kim H.T., Ha H., Kang G., Kim O.S., Ryu H., Biswas A.K., Lim S.M., Baik M.-H., Joo J.M. Angew. Chem. Int. Ed. 2017, 56, 16262-16266. doi 10.102/anie.201709162
  34. Jagtap R.A., Vinod C.P., Punji B. ACS Catal. 2019, 9, 431-441. doi: 10.1021/acscatal.8b04267
  35. Arbačiauskienė E., Martynaitis V., Krikštolaitytė S., Holzer W., Šačkus A. Arkivoc. 2011, xi, 1-21. doi: 10.3998/ark.5550190.0012.b01
  36. Mazeikaite R., Sudzius J., Urbelis G., Labanauskas L. Arkivoc. 2014, vi, 54-71. doi: 10.3998/ark.5550190.p008.842
  37. Karabiyikoglu S., Zora M. Appl. Organometal. Chem. 2016, 30, 876-885. doi: 10.1002/aoc.3516
  38. Vasilevsky S.F., Klyatskaya S.V., Tretyakov E.V., Elguero J. Heterocycles. 2003, 60, 879-886. doi: 10.3987/COM-02-9698
  39. Eller G.A., Vilkauskaite G., Arbačiauskienė E., Šačkus A., Holzer W. Synth. Commun. 2011, 41, 541-547. doi: 10.1080/00397911003629382
  40. Vilkauskaite G., Šačkus A., Holzer W. Eur. J. Org. Chem. 2011, 5123-5133. doi: 10.1002/ejoc.20110026
  41. Arbačiauskienė E., Vilkauskaite G., Šačkus A., Holzer W. Eur. J. Org. Chem. 2011, 1880-1890. doi: 10.1002/ejoc.201001560
  42. Liu J., Xu E., Jiang J., Huang Z., Zheng L., Liu Z.-Q. Chem. Commun. 2020, 56, 2202-2205. doi: 10.1039/c9cc09657d
  43. Mi P., Lang J., Lin S. Chem. Commun. 2019, 55, 7986-7989. doi: 10.1039/c9cc03363g
  44. Fan Z., Feng J., Hou Y., Rao M., Cheng J. Org. Lett. 2020, 22, 7981-7985. doi: 10.1021/acs.orglett.0c02911
  45. Yoshimatsu M., Kawahigashi M., Honda E., Kataoka T. J. Chem. Soc., Perkin Trans. 1. 1997, 695-700. doi: 10.1039/A605542G
  46. Levkovskaya G.G., Kobelevskaya V.A., Rudyakova E.V., Ha K.H., Samultsev D.O., Rozentsveig I.B. Tetrahedron. 2011, 67, 1844-1851. doi: 10.1016/j.tet.2011.01.028
  47. Кобелевская В.А., Попов А.В., Левковская Г.Г., Рудякова Е.В., Розенцвейг И.Б. ЖОрХ. 2018, 54, 1493-1496.
  48. Kobelevskaya V.A., Popov A.V., Levkovskaya G.G., Rudyakova E.V., Rozentsveig I.B. Russ. J. Org. Chem. 2018, 54, 1505-1508. doi: 10.1134/S1070428018100111
  49. Levkovskaya G.G., Rudyakova E.V., Kobelevskaya V.A., Popov A.V., Rozentsveig I.B. Arkivoc. 2016, iii, 82-89. doi: 10.3998/ark.5550190.p009.383
  50. Popov A.V., Kobelevskaya V.A., Larina L.I., Levkovskaya G.G. Mendeleev Comm. 2017, 27, 178-179. doi: 10.1016/j.mencom.2017.03.024
  51. Popov A.V., Kobelevskaya V.A., L.I. Larina I.B. Rozentsveig B. Arkivoc. 2019, vi, 1-14. doi: 10.24820/ark.5550190.p010.934
  52. Кобелевская В.А., Попов А.В., Никитин А. Я., Левковская Г.Г. ЖОрХ. 2017, 53, 145-147.
  53. Kobelevskaya V.A., Popov A.V., Nikitin A.Ya., Levkovskaya G.G. Russ. J. Org. Chem. 2017, 53, 144-146. doi: 10.1134/S1070428017010298
  54. Кобелевская В.А, Дьячкова С.Г., Попов А.В., Левковская Г.Г. ЖОрХ. 2016, 52, 915-917.
  55. Kobelevskaya V.A., D'yachkova S.G., Popov A.V., Levkovskaya G.G. Russ. J. Org. Chem. 2016, 52, 911-913. doi: 10.1134/S1070428016060270

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2023