Study of oxygen transport of microtubular La0.5Sr0.5Fe1 – xNbxO3 – δ membranes

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Perovskite-like oxides based on lanthanum-strontium ferrites are considered promising electrode materials for use in various types of fuel cells, and the strategy of modifying these materials by partial substitution of iron with highly charged ferroactive cations has proven to be an effective way to increase their chemical stability. In this paper, for the first time, the results of a study of the permeability of microtubular oxygen membranes based on La0.5Sr0.5Fe1 xNbxO3 – δ oxide are presented. The activation energy of oxide bulk diffusion (20±4 kJ/mol) was found.

Texto integral

Acesso é fechado

Sobre autores

I. Kovalev

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Autor responsável pela correspondência
Email: kovalev.ivan.vyacheslavovich@gmail.com
Rússia, Novosibirsk

R. Guskov

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: kovalev.ivan.vyacheslavovich@gmail.com
Rússia, Novosibirsk

V. Sivtsev

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: kovalev.ivan.vyacheslavovich@gmail.com
Rússia, Novosibirsk

M. Gongola

Institute of Solid State Chemistry and Mechanochemistry SB RAS; Novosibirsk State University

Email: kovalev.ivan.vyacheslavovich@gmail.com
Rússia, Novosibirsk; Novosibirsk

M. Popov

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: kovalev.ivan.vyacheslavovich@gmail.com
Rússia, Novosibirsk

Bibliografia

  1. Simner, S.P., Bonnett, J.F., Canfield, N.L., Meinhardt, K.D., Shelton, J.P., Sprenkle, V.L., and Stevenson, J.W., Development of lanthanum ferrite SOFC cathodes, J. Power Sources, 2003, vol. 113, no. 1, p. 1.
  2. Simner, S.P., Bonnett, J.F., Canfield, N.L., Meinhardt, K.D., Sprenkle, V.L., & Stevenson, J.W., Optimized lanthanum ferrite-based cathodes for anode-supported SOFCs, Electrochem. and Solid-State Letters, 2002, vol. 5, no. 7, p. A173.
  3. Plonczak, P., Gazda, M., Kusz, B., & Jasinski, P., Fabrication of solid oxide fuel cell supported on specially performed ferrite-based perovskite cathode, J. Power Sources, 2008, vol. 181, no. 1, p. 1.
  4. ten Elshof, J.E., Bouwmeester, H.J., & Verweij, H., Oxygen transport through La1 – xSrxFeO3 – δ membranes. I. Permeation in air/He gradients, Solid State Ionics, 1995, vol. 81, no. 1–2, p. 97.
  5. ten Elshof, J.E., Bouwmeester, H.J., & Verweij, H., Oxygen transport through La1 – xSrxFeO3 – δ membranes II. Permeation in air/CO, CO2 gradients, Solid State Ionics, 1996, vol. 89, no. 1–2, p. 81.
  6. Murade, P.A., Sangawar, V.S., Chaudhari, G.N., Kapse, V.D., & Bajpeyee, A.U., Acetone gas-sensing performance of Sr-doped nanostructured LaFeO3 semiconductor prepared by citrate solgel route, Curr. Appl. Phys., 2011, vol. 11, no. 3, p. 451.
  7. Backhaus-Ricoult, M., Adib, K., Work, K., Badding, M., Ketcham, T., Amati, M., & Gregoratti, L., In-situ scanning photoelectron microscopy study of operating (La, Sr) FeO3-based NOx-sensing surfaces, Solid State Ionics, 2012, vol. 225, p. 716.
  8. Nalbandian, L., Evdou, A., & Zaspalis, V., La1 – xSrxMO3 (M = Mn, Fe) perovskites as materials for thermochemical hydrogen production in conventional and membrane reactors, Intern. J. Hydrogen Energy, 2009, vol. 34, no. 17, p. 7162.
  9. Tan, X., Shi, L., Hao, G., Meng, B., & Liu, S., La0.7Sr0.3FeO3 – α perovskite hollow fiber membranes for oxygen permeation and methane conversion, Separation and Purification Technol., 2012, vol. 96, p. 89.
  10. Patrakeev, M.V., Bahteeva, J.A., Mitberg, E.B., Leonidov, I.A., Kozhevnikov, V.L., & Poeppelmeier, K.R., Electron/hole and ion transport in La1 – xSrxFeO3 – δ, J. Solid State Chem., 2003, vol. 172.
  11. Hou, Y., Wang, L., Bian, L., Zhang, Q., Chen, L., & Chou, K.C., Effect of high-valence elements doping at B site of La0.5Sr0.5FeO3 – δ, Ceram. International, 2022, vol. 48, no. 3, p. 4223.
  12. Bayraktar, D., Diethelm, S., Graule, T., & Holtappels, P., Properties of B-site substituted La0.5Sr0.5FeO3 – δ perovskites for application in oxygen separation membranes, J. Electroceram., 2009, vol. 22, no. 1–3, Special Issue, p. 55.
  13. Ecker, S.I., Dornseiffer, J., Werner, J., Schlenz, H., Sohn, Y.J., Sauerwein, F.S., Baumann, S., Bouwmeester, H.J.M., Guillon, O., Weirich, T.E., and Meulenberg, W.A., Novel low-temperature lean NOx storage materials based on La0.5Sr0.5Fe1 – xMxO3 – δ/Al2O3 infiltration composites (M = Ti, Zr, Nb), Appl. catalysis B: environmental, 2021, vol. 286, p. 119919.
  14. Bian, L., Duan, C., Wang, L., Zhu, L., O’Hayre, R., & Chou, K.C., Electrochemical performance and stability of La0.5Sr0.5Fe0.9Nb0.1O3 – δ symmetric electrode for solid oxide fuel cells, J. Power Sources, 2018, vol. 399, p. 398.
  15. Wang, S., Wei, B., & Lü, Z., Electrochemical performance and distribution of relaxation times analysis of tungsten stabilized La0.5Sr0.5Fe0.9W0.1O3 – δ electrode for symmetric solid oxide fuel cells, Intern. J. Hydrogen Energy, 2021, vol. 46, no. 58, p. 30101.
  16. Chen, X., Hao, S., Lu, T., Li, M., Han, L., Dong, P., Xiao, J., Zeng, X., and Zhang, Y., A vanadium-doped La0.5Sr0.5FeO3 – δ perovskite as a promising anode of direct carbon solid oxide fuel cells for brown coal utilization, J. Alloys and Compounds, 2022, vol. 928, p. 167212.
  17. Liu, F., Zhang, L., Huang, G., Niu, B., Li, X., Wang, L., Zhao, J., and Jin, Y., High performance ferritebased anode La0.5Sr0.5Fe0.9Mo0.1O3 – δ for intermediatetemperature solid oxide fuel cell, Electrochim. Acta, 2017, vol. 255, p. 118.
  18. Chizhik, S.A., Popov, M.P., Kovalev, I.V., Bychkov, S.F., and Nemudry, A.P., Comparison of stationary and transient kinetic methods in determining the rate of surface exchange reaction between molecular oxygen and MIEC perovskite, Chem. Engineering J., 2022, vol. 450, p. 137970.
  19. Dann, S.E., Currie, D.B., Weller, M.T., Thomas, M.F., and Al-Rawwas, A.D., The effect of oxygen stoichiometry on phase relations and structure in the system La1 – xSrxFeO3 – δ (0≤ x≤ 1, 0≤ δ≤ 0.5), J. Solid State Chem., 1994, vol. 109, no. 1, p. 134.
  20. Shubnikova, E.V., Popov, M.P., Bychkov, S.F., Chizhik, S.A., and Nemudry, A.P., The modeling of oxygen transport in MIEC oxide hollow fiber membranes, Chem. Engineering J., 2019, vol. 372, p. 251.
  21. Bouwmeester, H.J. and Gellings, P.J., The CRC handbook of solid state electrochemistry, CRC Press, 1997, p. 481–553.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Comparison of experimental and calculated diffraction patterns.

Baixar (64KB)
3. Fig. Fig. 2. SEM membranes LSFN10 in cross section (a) and on the surface (b).

Baixar (95KB)
4. Fig. 3. Results of energy dispersive analysis of the surface of the LSFN10 sample: (a) main phase, (b) secondary phase.

Baixar (100KB)
5. Fig. Fig. 4. Dependence of the specific oxygen flow (JO2) on the supply gas pressure (p1) for membranes of composition LSFN10.

Baixar (52KB)
6. Fig. Fig. 5. Arrhenius dependence of oxygen exchange for membranes of composition LSFN10.

Baixar (40KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024