Calcium-borosilicate glass-ceramic as a sealant for SOFC
- Authors: Zhigachev A.O.1, Bredikhin S.I.1, Agarkova E.A.1, Matveev D.V.1
-
Affiliations:
- ISSP RAS
- Issue: Vol 60, No 3 (2024)
- Pages: 242-250
- Section: Articles
- URL: https://modernonco.orscience.ru/0424-8570/article/view/671583
- DOI: https://doi.org/10.31857/S0424857024030099
- EDN: https://elibrary.ru/RBBBPU
- ID: 671583
Cite item
Abstract
The paper reports study of the applicability of calcium-borosilicate glass-ceramics with high boron oxide content as a sealant for solid oxide fuel cells. Chemical composition of the studied materials was 33 mol% CaO, 21 mol% B2O3, 46 mol% SiO2. The material was studied as an alternative to existing sealants on the base of calcium and barium aluminosilicates, because of the limited adhesion of the latter to steel interconnects in fuel cells. The study has shown that the studied sealant has a softening point of about 920–930°C, which allows one to use for sealing of fuel cells at 925°C. Use of relatively low sealing temperature allows one to avoid overheating of the cell during sealing and to avoid accompanying degradation of the service properties. The studied sealant has demonstrated excellent adhesion to surface of interconnect materials (Crofer 22 APU steel). Furthermore, the studied sealant was found to be thermomechanically compatible with Crofer 22 APU steel and ZrO2-based electrolytes.
Keywords
Full Text

About the authors
A. O. Zhigachev
ISSP RAS
Author for correspondence.
Email: zhigachev@issp.ac.ru
Russian Federation, Chernogolovka
S. I. Bredikhin
ISSP RAS
Email: zhigachev@issp.ac.ru
Russian Federation, Chernogolovka
E. A. Agarkova
ISSP RAS
Email: stepanova.ea@issp.ac.ru
Russian Federation, Chernogolovka
D. V. Matveev
ISSP RAS
Email: zhigachev@issp.ac.ru
Russian Federation, Chernogolovka
References
- Laosiripojana, N., Wiyaratn, W., Kiatkittipong, W., Arpornwichanop, A., Soottitantawat, P., and Assabumrungrat, S., Reviews on solid oxide fuel cell technology, Eng. J., 2009, vol. 13, p. 65.
- Shao, Z. and Tadé, M.O., Intermediate-Temperature Solid Oxide Fuel Cells, Springer, 2016, 266 p.
- Kaur, G., Intermediate Temperature Solid Oxide Fuel Cells: Electrolytes, Electrodes and Interconnects, Elsevier Science, 2019, 516 p.
- Sing, R. Sealing technology for solid oxide fuel cells (SOFC), Intern. J. Appl. Ceram. Technol., 2007, vol. 4, p. 134.
- Lessing, P.A., A review of sealing technologies applicable to solid oxide electrolysis cells, J. Mater. Sci., 2007, vol. 42, p. 3465.
- Tietz, F., Thermal expansion of SOFC materials, Ionics, 1999, vol. 5, p. 129.
- Singh, K. and Walia, T., Review on silicate and borosilicate-based glass sealants and their interaction with components of solid oxide fuel cell, Intern. J. Energy Res., 2021, vol. 45, p. 20559.
- Ghosh, S., Kundu, P., Das Sharma, A., Basu, R.N., and Maiti, H.S., Microstructure and property evaluation of barium aluminosilicate glass--ceramic sealant for anode-supported solid oxide fuel cell, J. Eur. Ceram. Soc., 2008, vol. 28, p. 69.
- Fergus, J.W., Sealants for solid oxide fuel cells, J. Power Sources, 2005, vol. 147, p. 46.
- Sohn, S.-B., Choi, S.-Y., Kim, G.-H., Song, H.-S., and Kim, G.-D., Stable sealing glass for planar solid oxide fuel cell, J. Non. Cryst. Solids, 2002, vol. 297, p. 103.
- Meinhardt, K.D., Kim, D.-S., Chou, Y.-S., and Weil, K.S., Synthesis and properties of a barium aluminosilicate solid oxide fuel cell glass--ceramic sealant, J. Power Sources, 2008, vol. 182, p. 188.
- Kermani, P.S., Ghatee, M., and Yazdani, A., Synthesis and Characterization of Barium Aluminosilicate Glass as the Sealant for Solid Oxide Fuel Cell Application, Adv. Ceram. Prog., 2020, vol. 6, p. 25.
- Puig, J., Ansart, F., Lenormand, P., Antoine, L., and Dailly, J., Sol-gel synthesis and characterization of barium (magnesium) aluminosilicate glass sealants for solid oxide fuel cells, J. Non. Cryst. Solids, 2011, vol. 357, p. 3490.
- Reddy, A.A., Tulyaganov, D.U., Pascual, M.J., Kharton, V.V., Tsipis, E.V., Kolotygin, V.A., and Ferreira, J.M.F., Diopside–Ba disilicate glass–ceramic sealants for SOFCs: Enhanced adhesion and thermal stability by Sr for Ca substitution, Intern. J. Hydrogen Energy, 2013, vol. 38, p. 3073
- Reddy, A.A., Tulyaganov, D.U., Goel, A., Pascual, M.J., Kharton, V.V., Tsipis, E.V., and Ferreira, J.M.F., Diopside — Mg orthosilicate and diopside — Ba disilicate glass–ceramics for sealing applications in SOFC: Sintering and chemical interactions studies, Intern. J. Hydrogen Energy, 2012, vol. 37, p. 12528.
- Xie, J., Hao, W., and Wang, F., The analysis of interfacial thermal stresses of solid oxide fuel cell applied for submarine power, Intern. J. Energy Res., 2018, vol. 42, p. 2010.
- Yan, T., Zhang, W., Mao, H., Chen, X., and Bai, S., The effect of on the sintering contraction behaviors of glass-ceramics, Intern. J. Mod. Phys. B, 2019, vol. 33, p. 1950070.
- Veron, E., Garaga, M.N., Pelloquin, D., Cadars, S., Suchomel, M., Suard, E., Massiot, D., Montouillout, V., Matzen, G., and Allix, M., Synthesis and structure determination of : a new calcium borosilicate, Inorg. Chem., 2013, vol. 52, p. 4250.
- Dai, B., Zhu, H., Zhou, H., Xu, G., and Yue, Z., Sintering, crystallization and dielectric properties of system glass ceramics, J. Cent. South Univ., 2012, vol. 19, p. 2101.
- Chang, C.-R. and Jean, J.-H., Crystallization kinetics and mechanism of low-dielectric, low-temperature, cofirable glass-ceramics, J. Amer. Ceram. Soc., 1999, vol. 82, p. 1725.
- Chiang, C.-C., Wang, S.-F., Wang, Y.-R., and Wei, W.-C.J., Densification and microwave dielectric properties of system glass–ceramics, Ceram. Intern., 2008, vol. 34, p. 599.
- Shao, H., Wang, T., and Zhang, Q., Preparation and properties of CaO–SiO2–B2O3 glass-ceramic at low temperature, J. Alloys Compd., 2009, vol. 484, p. 2.
- Zhu, H., Liu, M., Zhou, H., Li, L., and Lv, A., Study on properties of CaO-SiO2-B2O3 system glass-ceramic, Mater. Res. Bull., 2007, vol. 42, p. 1137.
- Rodríguez-López, S., Haanappel, V.A.C., Durán, A., Muñoz, F., Mather, G.C., Pascual, M.J., and Gross-Barsnick, S.M., Glass–ceramic seals in the system operating under simulated SOFC conditions, Intern. J. Hydrogen Energy, 2016, vol. 41, p. 15335.
- Zhang, T., Fahrenholtz, W.G., Reis, S.T., and Brow, R.K., Borate volatility from SOFC sealing glasses, J. Amer. Ceram. Soc., 2008, vol. 91, p. 2564.
- Inoue, H., Aoki, N., and Yasui, I., Molecular dynamics simulation of the structure of borate glasses, J. Amer. Ceram. Soc., 1987, vol. 70, p. 622.
- Henderson, G.S., A Si K-edge EXAFS/XANES study of sodium silicate glasses, J. Non. Cryst. Solids, 1995, vol. 183, p. 43.
- Mastelaro, V.R., Zanotto, E.D., Lequeux, N., and Cortès, R., Relationship between short-range order and ease of nucleation in glasses, J. Non. Cryst. Solids, 2000, vol. 262, p. 191.
Supplementary files

Note
Публикуется по материалам IX Всероссийской конференции с международным участием “Топливные элементы и энергоустановки на их основе”, Черноголовка, 2022.