Magnetron technology for manufacturing electrodes of electrolysers with a proton-exchange membrane

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The results of the development and study of catalysts for the anode of water decomposition electrolyzers with a proton exchange membrane are presented. To deposit catalytic layers on a titanium carrier, the magnetron method of sputtering composite targets in a vacuum was used. Iridium and ruthenium were used as the main catalyst, and molybdenum, chromium, and titanium were used as functional additives. The electrochemical and structural characteristics of catalytic coatings have been studied. Using voltammetry methods, cyclic current-voltage and anodic characteristics of catalytic compositions were obtained, including at different temperatures of subsequent heat treatment in air, as well as at different measurement temperatures. The Tafel slopes of the current-voltage characteristics of the composite anodes, as well as the currents at a potential of 1.55 V (RHE), were determined. It has been shown that the minimum slopes were obtained for the Ir–Ru–Mo–Ti catalytic composition (b = 40–63 mV/dec), and the maximum currents for the Ir–Mo–Cr catalytic composition (i = 100–110 mA/cm2 at E = 1.55 V (RHE)). It has been shown that the magnitude of CV adsorption currents in the anodic potential region correlates with the coefficient b of the Tafel equation E–lgi and determines the number of catalytic centers for the deprotonization stage of the oxygen evolution reaction. However, the activity of the catalyst in the OER is determined not only by the number of such centers, but mainly by the functional features of the catalyst itself, i.e., the composition of the catalyst and the conditions for its preparation (including the temperature of subsequent heat treatment of the catalyst in air). Catalytic compositions based on iridium with additions of molybdenum and chromium have higher activity in OER. Structural studies have shown that during magnetron sputtering of composite targets, even with small catalyst loadings, dispersed structures are formed, which on real porous titanium anodes should form on the front surface with a higher catalyst content.

Texto integral

Acesso é fechado

Sobre autores

S. Nefedkin

National Research University “Moscow Power Engineering Institute”

Autor responsável pela correspondência
Email: nefedkinsi@mpei.ru
Rússia, Krasnokazarmennaya St. 14, Moscow, 111250

A. Ryabukhin

National Research University “Moscow Power Engineering Institute”

Email: nefedkinsi@mpei.ru
Rússia, Krasnokazarmennaya St. 14, Moscow, 111250

V. Eletskikh

National Research University “Moscow Power Engineering Institute”

Email: nefedkinsi@mpei.ru
Rússia, Krasnokazarmennaya St. 14, Moscow, 111250

R. Boldin

National Research University “Moscow Power Engineering Institute”

Email: nefedkinsi@mpei.ru
Rússia, Krasnokazarmennaya St. 14, Moscow, 111250

V. Mikhnevich

National Research University “Moscow Power Engineering Institute”

Email: nefedkinsi@mpei.ru
Rússia, Krasnokazarmennaya St. 14, Moscow, 111250

M. Klimova

National Research University “Moscow Power Engineering Institute”

Email: nefedkinsi@mpei.ru
Rússia, Krasnokazarmennaya St. 14, Moscow, 111250

Bibliografia

  1. Нефедкин, С.И. Автономные энергетические установки и системы. М.: Изд. МЭИ, 2018. 220 с. ISBN 978-5-7046-1847-8
  2. Кулешов, Н.В., Попов, С.К., Захаров, С.В., Нефедкин, С.И., Кулешов, В.Н., Петин, С.Н., Рогалев, А.Н., Фатеев, В.Н. Водородная энергетика: Учебник. М.: Изд. МЭИ, 2021. – 546 с. ISBN 978-5-7046-2438-7
  3. https://newatlas.com/energy/worlds-largest-offshore-wind-farm-hornsea-first-power/.
  4. Park, S., Shao, Y., Liu, J., and Wang, Y., Oxygen electrocatalysts for water electrolyzers and reversible fuel cells: status and perspective, Energy Environ Sci., 2012, vol. 5, p. 9331.
  5. Carmo, M., Fritz, D.L., Mergel, J., and Stolten, D., A Comprehensive Review on PEM Water Electrolysis, Intern. J. Hydrogen Energy, 2013, vol. 38, p. 4901.
  6. Kadakia, K., Datta, M.K., Velikokhatnyi, O.I., Jampani, P., Park, S.K., Saha, P., Poston, J.A., Manivannan, A., and Kumta, P.N., Novel (Ir,Sn ,Nb)O 2 anode electrocatalysts with reduced noble metal content for PEM based water electrolysis, Intern. J. Hydrogen Energy, 2012, vol. 37, p. 3001.
  7. Kadakia, K., Datta, M.K., Velikokhatnyi, O.I., Jampani, P.H., and Kumta, P.N., Fluorine doped (Ir,Sn ,Nb)O 2 anode electro-catalyst for oxygen evolution via PEM based water electrolysis, Intern. J. Hydrogen Energy, 2014, vol. 39, p. 664.
  8. Петрий, O.A. Электросинтез наноструктур и наноматериалов. Успехи химии. 2015. Т. 84. С. 159.
  9. Yagi, M., Tomita, E., and Kuwabara, T., Remarkably high activity of electrodeposited IrO 2 film for electrocatalytic water oxidation, J. Electroanal. Chem., 2005, vol. 579, p. 83.
  10. El Sawy, E.N. and Birss, V.I., Nano-porous iridium and iridium oxide thin films formed by high efficiency electrodeposition, J. Mater. Chem., 2009, vol. 19, p. 8244.
  11. Xu, J., Liu, G., Li, J., and Wang, X., The electrocatalytic properties of an IrO 2  /SnO 2 catalyst using SnO2 as a support and an assisting reagent for the oxygen evolution reaction, Electrochim. Acta, 2012, vol. 59, p. 105.
  12. Mayousse, E., Maillard, F., Fouda-Onana, F., Sicardy, O., and Guillet, N., Synthesis and characterization of electrocatalysts for the oxygen evolution in PEM water electrolysis, Intern. J. Hydrogen Energy, 2011, vol. 36 (17), p. 10474.
  13. Wu, X., Tayal, J., Basu, S., and Scott, K., Nano-crystalline Ru x Sn1-xO 2 powder catalysts for oxygen evolution reaction in proton exchange membrane water electrolysers, Intern. J. Hydrogen Energy, 2011, vol. 36, p. 14796.
  14. De Pauli, C.P. and Trasatti, S., Electrochemical surface characterization of IrO 2 +SnO 2 mixed oxide electrocatalysts, J. Electroanal. Chem., 1995, vol. 396, p. 161.
  15. De Pauli, C.P. and Trasatti, S., Composite materials for electrocatalysis of 02 evolution: IrO 2 +SnO 2 in acid solution, J. Electroanal. Chem., 2002, vol. 538–539, p. 145.
  16. Fierro, S., Kapałka, A., and Comninellis, C., Electrochemical comparison between IrO 2 prepared by thermal treatment of iridium metal and IrO 2 prepared by thermal decomposition of H 2 IrCl 6 solution, Electrochem. Commun., 2010, vol. 12, p. 172.
  17. Murakami, Y., Tsuchiya, S., Yahikozawa, K., and Takasu, Y., Preparation of ultrafine IrO 2 -Ta 2 O 5 binary oxide particles by a sol-gel process, Electrochim. Acta, 1994, vol. 39, p. 651.
  18. Marshall, A., Børresen, B., Hagen, G., Tsypkin, M., and Tunold, R., Electrochemical characterisation of Ir x Sn 1-x O 2 powders as oxygen evolution electrocatalysts, Electrochim. Acta, 2006, vol. 51, p. 3161.
  19. Marshall, A.T., Sunde, S., Tsypkin, M., and Tunold, R., Performance of a PEM water electrolysis cell using Ir x Ru y Ta z O 2 electrocatalysts for the oxygen evolution electrode, Intern. J. Hydrogen Energy, 2007, vol. 32, p. 2320.
  20. Song, S., Zhang, H., Ma, X., Shao, Z., Baker, R.T., and Yi, B., Electrochemical investigation of electrocatalysts for the oxygen evolution reaction in PEM water electrolyzers, Intern. J. Hydrogen Energy, 2008, vol. 33, p. 4955.
  21. Tolstoy, V.P., Kaneva, M.V., Lobinsky, A.A., and Koroleva, A.V., Direct successive ionic layer deposition of nanoscale iridium and tin oxide on titanium surface for electrocatalytic application in oxygen evolution reaction during water electrolysis in acidic medium, J. Alloys and Compounds, 2020, vol. 834, p. 155205.
  22. Нефедкин, С.И, Климова, М.А., Рябухин, А.В., Чижов, А.В., Левин, И.И. Каталитические композиции, полученные в магнетроне из композитных мишеней для электродов топливных элементов и электролизеров с протонообменной мембраной. Российские нанотехнологии. 2021. Т. 16. № 4. С. 126.
  23. Нефедкин, С.И, Климова, М.А., Коломейцева, Е.А., Клочнев, М.К., Левин, Э.Е., Петрий, О.А. Дисперсные катализаторы на основе Pt и Ir, синтезированные в магнетроне, для электролизеров воды с твердым полимерным электролитом. Электрохимия. 2017. Т. 53. С. 321. https://doi.org/10.7868/S04248570170301122
  24. Sudipta, De, Zhang, Jiaguang, Luque, Rafael, and Yan, Ning, Ni-based bimetallic heterogeneous catalysts for energy and environmental applications, Energy Environ. Sci., 2016, vol. 9, p. 3314

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Cyclic voltammograms of the Ir–Mo–Cr catalytic composition (ms = 0.321 mg/cm2). 25% O2 in Ar plasma. Tto, °C: 1 – without heat treatment; 2 – 250; 3 – 300; 4 – 350. Electrolyte solution 0.5 M H2SO4. Tmeas, °C: a – 25, b – 50; c – 90. Sweep rate – 50 mV/s.

Baixar (224KB)
3. Fig. 2. Voltamperogram of Ir–Mo–Cr anodes (ms = 0.321 mg/cm2). 25% O2 in Ar plasma. Tto, °C: 1 – without heat treatment; 2 – 250; 3 – 350; 4 – 400; 5 – 500. Electrolyte solution 0.5 M H2SO4. Tmeas, °C: a – 25, b – 50; c – 90, d – 25, d – 50, e – 90. Sweep rate – 50 mV/s.

Baixar (380KB)
4. Fig. 3. Cyclic voltammograms of the Ir–Ru–Mo–Ti catalytic composition (ms = 0.324 mg/cm2). 50% O2 in Ar plasma. Tto, °C: 1 – without heat treatment; 2 – 250; 3 – 300; 4 – 350. Electrolyte solution 0.5 M H2SO4. Tmeas, °C: a – 25, b – 50; c – 90. Sweep rate – 50 mV/s.

Baixar (236KB)
5. Fig. 4. Voltamperogram of the Ir–Ru–Mo–Ti anode (ms = 0.324 mg/cm2). 50% O2 in Ar plasma. Tto, °C: 1 – without heat treatment; 2 – 250; 3 – 300; 4 – 350. Electrolyte solution 0.5 M H2SO4. Tmeas, °C: a – 25, b – 50; c – 90, d – 25, d – 50, e – 90. Sweep rate – 50 mV/s.

Baixar (321KB)
6. Fig. 5. Anodic galvanostatic characteristics (i = 20 mA/cm2): a) Ir–Mo–Cr anode synthesized at 25% oxygen in argon plasma and heat treatment in air (Tto = 250°C). b) Ir–Ru–Mo anode synthesized at 50% oxygen in argon plasma and heat treatment in air (Tto = 250°C). Electrolyte solution 0.5 M H2SO4. Tmeas = 90°C.

Baixar (78KB)
7. Fig. 6. Enlarged images of the Ir–Mo–Cr catalytic composition on a titanium substrate Tto = 500°C anode (ms = 0.321 mg/cm2) 25% O2 in Ar plasma.

Baixar (458KB)

Nota

Публикуется по материалам IX Всероссийской конференции с международным участием “Топливные элементы и энергоустановки на их основе”, Черноголовка, 2022.


Declaração de direitos autorais © Russian Academy of Sciences, 2024