The effect of the nature of pore former on the microstructure of SOFC anodes based on NiO and 10YSZ formed by hybrid 3d printing

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, anodes based on nickel oxide and zirconium oxide-stabilized yttrium oxide were developed by the method of hybrid inkjet 3D printing with laser treatment. The granulometric composition of the NiO/Zr0.9Y0.1O2 (10YSZ) composite and the rheological characteristics of printing pastes based on it were determined. Experiments were carried out on printing three-dimensional test objects using the developed ceramic paste. The influence of additionally injected into the composition pore formers – graphite and potato starch – on the rheological characteristics of the paste was studied. The obtained samples of supporting anodes were studied by a complex of physicochemical methods to determine the morphological and structural characteristics.

Full Text

Restricted Access

About the authors

I. A. Malbakhova

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Author for correspondence.
Email: malbakhova.inna@yandex.ru
Russian Federation, Novosibirsk

A. S. Bagishev

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: malbakhova.inna@yandex.ru
Russian Federation, Novosibirsk

A. M. Vorobyev

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: malbakhova.inna@yandex.ru
Russian Federation, Novosibirsk

Т. А. Borisenko

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: malbakhova.inna@yandex.ru
Russian Federation, Novosibirsk

A. I. Titkov

Institute of Solid State Chemistry and Mechanochemistry SB RAS

Email: malbakhova.inna@yandex.ru
Russian Federation, Novosibirsk

References

  1. Singla, M.K., Nijhawan, P., and Oberoi, A.S., Hydrogen fuel and fuel cell technology for cleaner future: a review, Environ. Sci. Pollut. Res., 2021, vol. 28, no. 13, p. 15607.
  2. Parra, D., Valverde, L., Pino, F.J., and Patel, M.K., A review on the role, cost and value of hydrogen energy systems for deep decarbonisation, Renew. Sust. Energ. Rev., 2019, vol. 101, p. 279.
  3. Khan, M.Z., Iltaf, A., Ishfaq, H.A., Khan, F.N., Tanveer, W.H., Song, R.H., Mehran, M.T., Saleem, M., Hussain, A., and Masaud, Z., Flat-tubular solid oxide fuel cells and stacks: A review, J. Asian Ceram. Soc., 2021, vol. 9, no. 3, p. 745.
  4. Tai, X.Y., Zhakeyev, A., Wang, H., Jiao, K., Zhang, H., and Xuan, J., Accelerating fuel cell development with additive manufacturing technologies: state of the art, opportunities and challenges, Fuel Cells, 2019, vol. 19, no. 6, p. 650.
  5. Zouridi, L., Garagounis, I., Vourros, A., Marnellos, G.E., and Binas, V., Advances in Inkjet-Printed Solid Oxide Fuel Cells, Adv. Mater. Technol., 2022, vol. 7, no. 7, 2101491.
  6. Pelz, J.S., Ku, N., Meyers, M.A., and Vargas-Gonzalez, L.R., Additive manufacturing of structural ceramics: a historical perspective, J. Mater. Res. Technol., 2021, vol. 15, p. 670.
  7. Sun, C., Wang, Y., McMurtrey, M.D., Jerred, N.D., Liou, F., and Li, J., Additive manufacturing for energy: A review, Appl. Energy, 2021, vol. 282, p. 116041.
  8. Pham, T.T., Tu, H.P., Dao, T.D., To, T.D., Doan, D.C.T., and Dang, M.C., Fabrication of an anode functional layer for an electrolyte-supported solid oxide fuel cell using electrohydrodynamic jet printing, Adv. Nat. Sci.: Nanosci. Nanotechnol., 2019, vol. 10, no. 1, p. 015004.
  9. Jang, I. and Kelsall, G.H., Fabrication of 3D NiO-YSZ structures for enhanced performance of solid oxide fuel cells and electrolysers, Electrochem. Commun., 2022, vol. 137, p. 107260.
  10. Sobolev, A., Stein, P., and Borodianskiy, K., Synthesis and characterization of NiO colloidal ink solution for printing components of solid oxide fuel cells anodes, Ceram. Int., 2020, vol. 46, no. 16, p. 25260.
  11. Ghazanfari, A., Li, W., Leu, M. C., Watts, J. L., and Hilmas, G. E., Additive manufacturing and mechanical characterization of high density fully stabilized zirconia, Ceram. Int., 2017, vol. 43, no. 8, p. 6082.
  12. Xing, B., Cao, C., Zhao, W., Shen, M., Wang, C., and Zhao, Z., Dense 8 mol% yttria-stabilized zirconia electrolyte by DLP stereolithography, J. Eur. Ceram. Soc., 2020, vol. 40, no. 4, p. 1418.
  13. Kuterbekov, K.A., Nikonov, A.V., Bekmyrza, K.Z., Pavzderin, N.B., Kabyshev, A.M., Kubenova, M.M., and Aidarbekov, N., Classification of Solid Oxide Fuel Cells, Nanomaterials, 2022, vol. 12, no. 7, p. 1059.
  14. Prakash, B.S., Kumar, S.S., and Aruna, S.T., Properties and development of Ni/YSZ as an anode material in solid oxide fuel cell: A review, Renew. Sust. Energ. Rev., 2014, vol. 36, p. 149.
  15. Sauerwein, M., Zlopasa, J., Doubrovski, Z., Bakker, C., and Balkenende, R., Reprintable paste-based materials for additive manufacturing in a circular economy, Sustainability, 2020, vol. 12, no. 19, p. 8032.
  16. Sukeshini, A.M., Cummins, R., Reitz, T.L., and Miller, R.M., Inkjet Printing of Anode Supported SOFC: Comparison of Slurry Pasted Cathode and Printed Cathode, Electrochem. solid-state lett., 2009, vol. 12, p. B176.
  17. Deng, X. and Petric, A., Effect of anode porosity and pore size on electrochemical performance, ECS Proceedings Volumes, 2003, vol. 1, p. 653.
  18. Clemmer, R.M. and Corbin, S.F., Effect of graphite pore‐forming agents on the sintering characteristics of Ni/YSZ composites for solid oxide fuel cell applications, Int. J. Appl. Ceram., 2012, vol. 9, no. 6, p. 1022.
  19. Zhou, J., Liu, Q., Zhang, L., Pan, Z., & Chan, S.H., Influence of pore former on electrochemical performance of fuel-electrode supported SOFCs manufactured by aqueous-based tape-casting, Energy, 2016, vol. 115, p. 149.
  20. Хатко, З.Н., Титов, С.А., Ашинова, А.А., Колодина, Е.М. Влияние комбинирования пектиновых веществ на вязкость их водных растворов. Вестник ВГУИТ. 2019. Т. 81. С. 133.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Granulometry of the original powders and the powder used for 3D printing of anodes.

Download (133KB)
3. Fig. 2. Dependence of dynamic viscosity on the shear rate for an organic binder and printing compositions based on NiO/YSZ composite with different mass contents of the solid phase in the pastes.

Download (97KB)
4. Fig. 3. Micrographs of NiO/10YSZ anodes obtained from a paste with a solid phase mass content of 60%: (a) 40-fold magnification, (b) 500-fold magnification.

Download (472KB)
5. Fig. 4. Dependence of dynamic viscosity on the shear rate for printed composites based on NiO/10YSZ with different types of blowing agents.

Download (96KB)
6. Fig. 5. Dependence of dynamic viscosity on the shear rate for printed composites based on NiO/10YSZ depending on the mass fraction of the blowing agent at a mass fraction of the composite of 60%: (a) blowing agent graphite, (b) blowing agent starch.

Download (201KB)
7. Fig. 6. Micrographs of pore-forming agents used in printing compositions based on NiO/10YSZ: (a) starch, (b) graphite.

Download (211KB)
8. Fig. 7. Granulometry of powders of pore-forming agents used for 3D printing of anodes: (a) starch, (b) graphite.

Download (210KB)
9. Fig. 8. Micrographs of NiO/10YSZ anodes depending on the type of blowing agent with a blowing agent mass content of 10%: (a), (b) sample with starch blowing agent; (c), (d) sample with graphite blowing agent.

Download (710KB)
10. Fig. 9. Micrographs of a cleavage of a printed sample of NiO/10YSZ composite anode after thermal sintering with different mass contents of graphite blowing agent: (a) without blowing agent, (b) 5%, (c) 10%, (d) 15%.

Download (575KB)

Note

Публикуется по материалам IX Всероссийской конференции с международным участием “Топливные элементы и энергоустановки на их основе, Черноголовка, 2022.


Copyright (c) 2024 Russian Academy of Sciences