Diffusion nickel-cobalt coatings for protection of solid oxide electrolysis cells’ current collectors made of Crofer 22 APU steel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The evolution of the microstructure and composition of Ni-Co coatings for the protection of current collectors made of stainless chromium steel Crofer 22 APU from oxidation in the operating mode of the anode chamber of solid oxide electrolysis cells (SOEСs) has been studied. It is shown that due to the diffusion of the components of the steel and the coating, as well as the redox reactions occurring under the coating in the operating mode of the SOEС, the diffusion of chromium to the surface of the current collector is blocked. During operation in the air atmosphere of the anode chamber, the composition of the protective coating changes from metallic Ni-Co to a mixture of highly conductive oxides (Fe,Ni,Co)3O4 and (Ni,Co)O, which leads to a change in the type of time dependence of the specific surface resistance of the junction current collector-anode. At the same time, the obtained values of ~17 mOhm cm2 during tests of 7000 hours are quite low and these coatings can be used to protect SOEС stack current collectors made of stainless chromium steel from oxidation.

Full Text

Restricted Access

About the authors

O. V. Pikalov

Osipyan Institute of Solid State Physics RAS

Email: ladyn@issp.ac.ru
Russian Federation, Academician Osipyan, 2, Chernogolovka, Moscow region, 142432

N. V. Demeneva

Osipyan Institute of Solid State Physics RAS

Author for correspondence.
Email: ladyn@issp.ac.ru
Russian Federation, Academician Osipyan, 2, Chernogolovka, Moscow region, 142432

I. I. Zverkova

Osipyan Institute of Solid State Physics RAS

Email: ladyn@issp.ac.ru
Russian Federation, Academician Osipyan, 2, Chernogolovka, Moscow region, 142432

S. I. Bredikhin

Osipyan Institute of Solid State Physics RAS

Email: ladyn@issp.ac.ru
Russian Federation, Academician Osipyan, 2, Chernogolovka, Moscow region, 142432

References

  1. Григорьев, С.А., Порембский, В.И., Фатеев, В.Н., Самсонов, Р.О., Козлов, С.И. Получение водорода электролизом воды: современное состояние, проблемы и перспективы. Транспорт на альтернативном топливе. 2008. № 3. C. 62.
  2. Ni, Meng, Leung, Michael K.H., and Leung, Dennis Y.C., Technological development of hydrogen production by solid oxide electrolyzer cell (SOEC), Intern. J. Hydrogen Energy, 2008, vol. 33(9), Issue 9, p. 2337.
  3. Zhu, W.Z. and Deevi, S.C., A review on the status of anode materials for solid oxide fuel cells, Mater. Sci. Eng. A., 2003, A362, p. 228.
  4. Fergus, J.W., Metallic interconnects for solid oxide fuel cells, Mater. Sci. and Engineering: A, 2005, vol. 397 (1-2), p. 271.
  5. Yang, Z., Xia, G., Maupin, G.D., and Stevenson, J.W., Low thermal conductivity thermal barrier coating deposited by the solution plasma spray process, Surf. Coat. Technol., 2006, vol. 201, p. 4476.
  6. Ледуховская, Н.В., Струков, Г.В., Бредихин, С.И. Электропроводное защитное металлическое покрытие токового коллектора и способ его нанесения. Пат. 2465694 Российская Федерация, опубл. 27.10.2012, Бюл. № 30.
  7. Деменева, Н.В., Матвеев, Д.В., Хартон, В.В., Бредихин, С.И. Особенности высокотемпературного окисления токовых коллекторов твердооксидных топливных элементов, обусловленные диффузионными процессами в приповерхностных областях. Электрохимия. 2016. Т. 52. С. 759.
  8. Demeneva, N.V., Kononenko, O.V., Matveev, D.V., Kharton, V.V., and Bredikhin, S.I., Composition-gradient protective coatings for solid oxide fuel cell interconnectors, Mater. Letters, 2019, vol. 240, p. 201.
  9. Sachitanand, R., Sattari, M., Svensson, J., and Froitzheim, J., Evaluation of the oxidation and Cr evaporation properties of selected FeCr alloys used as SOFC interconnects, Intern. J. Hydrogen Energy, 2013, vol. 38(35), p. 15328.
  10. Рябухин, А.Г. Система эффективных ионных радиусов. Изв. Челябинского научн. центра. 2000. № 4. С. 33. [Ryabuchin, A.G., Effective ionic radii, Izvestiya Chelyabinskogo nauchnogo centra (in Russian), 2000, no. 4, p. 33.]
  11. Эткинс, П. Физическая химия. Т.1. Москва: Мир, 1980.
  12. Jalilvand, G. and Faghihi-Sani, A., Fe doped Ni–Co spinel protective coating on ferritic stainless steel for SOFC interconnect application, Intern. J. Hydrogen Energy, 2013, vol. 38, Issue 27, p. 12007.
  13. Rao, Y., Wang, Z., Chen, L., Wu, R., Peng, R., and Lu, Y., Structural, electrical, and electrochemical properties of cobalt-doped NiFe2O4 as a potential cathode material for solid oxide fuel cells, Intern. J. Hydrogen Energy, 2013, vol. 38, Issue 33, p. 14329.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Electron microscopic image of the surface of the nickel-cobalt coating on Crofer 22 APU steel: (a) immediately after deposition, (b) after vacuum annealing, (c) after oxidation in air at 850°C for 50 h with elemental analysis.

Download (588KB)
3. Fig. 2. Change in the specific weight gain of Crofer 22 APU steel samples with Ni/Co coatings and without coatings during oxidation in air at 850°C.

Download (108KB)
4. Fig. 3. Electron microscopic image with elemental analysis along the cross-section line of Crofer 22 APU/Ni-Co coating immediately after application (a) and after vacuum annealing at 900°C for 1 h (b).

Download (402KB)
5. Fig. 4. Electron microscopic image with elemental analysis along the cross-section line of Crofer 22 APU/Ni-Co after oxidation in air at 850°C for 50 and 400 h.

Download (543KB)
6. Fig. 5. Diffraction patterns taken from the surface of samples of Crofer 22 APU steel with a Ni-Co coating after oxidation in air at 850°C for: (a) 50 h, (b) 400 h.

Download (121KB)
7. Fig. 6. Dependences of the specific surface resistance of the Crofer 22 APU with Ni-Co coating/LSM cathode junction on the time of exposure to a current load of 0.5 A/cm2 at a temperature of 850°C. 1 – Crofer 22 APU; 2 – Crofer 22 APU/Ni-Co (+) polarity; 3 – Crofer 22 APU/Ni-Co (–) polarity.

Download (72KB)

Note

Публикуется по материалам IX Всероссийской конференции с международным участием “Топливные элементы и энергоустановки на их основе”, Черноголовка, 2022.


Copyright (c) 2024 Russian Academy of Sciences