Electrodeposition of Photosensitive Layers Based on Conducting Polymers and Zinc Phthalocyaninate, Their Structure and Photoelectrical Properties

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Photosensitive hybrid layers were obtained by electrochemical polymerization of pyrrole and 3,4-ethylenedioxythiophene (EDOT) in the presence of water-soluble sodium salt of zinc octa(3ʹ,5ʹ-dicarboxyphenoxy)phthalocyaninate (ZnPc) containing 16 ionogenic carboxylate groups. It was found that the process of electrodeposition of hybrid layers most effectively occurs in galvanostatic and potentiostatic modes on the sublayer of the PEDOT-polyacid complex. The electronic and chemical structure and morphology of hybrid layers of polypyrrole (PPy) obtained in the presence of ZnPc were studied. Possible reasons are considered that the measured values of photosensitivity and external quantum yield of charge carrier generation in PPy-ZnPc are several times higher than in PEDOT-ZnPc.

Full Text

Restricted Access

About the authors

O. L. Gribkova

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: oxgribkova@gmail.com
Russian Federation, Moscow

V. A. Kabanova

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: oxgribkova@gmail.com
Russian Federation, Moscow

I. D. Kormshchikov

Lomonosov Moscow State University

Email: oxgribkova@gmail.com
Russian Federation, Moscow

A. R. Tameev

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: oxgribkova@gmail.com
Russian Federation, Moscow

A. A. Nekrasov

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: secp@elchem.ac.ru
Russian Federation, Moscow

References

  1. Симон, Ж., Андре, Ж.-Ж. Молекулярные полупроводники. Фотоэлектрические свойства и солнечные элементы. М.: Мир, 1988. p. 344.
  2. Gsänger, M., Bialas, D., Huang, L., Stolte, M., and Würthner, F., Organic Semiconductors based on Dyes and Color Pigments, Advanced Mater., 2016, vol. 28, no. 19, p. 3615. https://doi.org/10.1002/adma.201505440
  3. Ray, A.K., Mukherjee, D., and Sarkar, S., Phthalocyanines: A Class of Organic Photoconductive Materials, Photoconductivity and Photoconductive Mater.: Fundamentals, Techniques and Applications: Vol. 1 and 2, 2022, p. 831. https://doi.org/10.1002/9781119579182.ch21
  4. Bao, Z., Lovinger, A.J., and Dodabalapur, A., Highly ordered vacuum-deposited thin films of metallophthalocyanines and their applications in field-effect transistors, Advanced Mater., 1997, vol. 9, no. 1, p. 42. https://doi.org/10.1002/adma.19970090108
  5. Odintsova, E.G., Petrenko, V.E., Kolker, A.M., and Borovkov, N.Y., Molecular origin of structural defects in the zinc phthalocyanine film, Phys. Chem. Chem. Phys., 2022, vol. 24, no. 33, p. 19956. https://doi.org/10.1039/D2CP01221A
  6. Kabanova, V.A., Gribkova, O.L., Tameev, A.R., and Nekrasov, A.A., Hole transporting electrodeposited PEDOT-polyelectrolyte layers for perovskite solar cells, Mendeleev Commun., 2021, vol. 31, no. 4, p. 454. https://doi.org/10.1016/j.mencom.2021.07.005
  7. Истакова, О.И., Конев, Д.В., Медведева, Т.О., Золотухина, Е.В., Воротынцев, М.А. Эффективность процесса электрополимеризации пиррола в различных условиях. Электрохимия. 2019. Т. 55. С. 85. https://doi.org/10.1134/S0424857018130248
  8. Qiu, Y.-J. and Reynolds, J. R., Electrochemically initiated chain polymerization of pyrrole in aqueous media, J. Polymer Sci. Part A: Polymer Chem., 1992, vol. 30, no. 7, p. 1315. https://doi.org/10.1002/pola.1992.080300709
  9. Muthuraman, G., Shim, Y.-B., Yoon, J.-H., and Won, M.-S., Simultaneous immobilization of cobalt tetrasulfonated phthalocyanine during electropolymerization of pyrrole in presence of surfactants: a study of film morphology and its conductivity, Synthetic Metals, 2005, vol. 150, no. 2, p. 165. https://doi.org/10.1016/j.synthmet.2005.02.002
  10. Singh, V.V., Gupta, G., Sharma, R., Boopathi, M., Pandey, P., Ganesan, K., Singh, B., Tiwari, D. C., Jain, R., and Vijayaraghavan, R., Detection of chemical warfare agent Nitrogen Mustard–1 based on conducting polymer phthalocyanine nanorod modified electrode, Synthetic Metals, 2009, vol. 159, no. 19, p. 1960. https://doi.org/10.1016/j.synthmet.2009.07.001
  11. Patois, T., Sanchez, J.B., Berger, F., Fievet, P., Segut, O., Moutarlier, V., Bouvet, M., and Lakard, B., Elaboration of ammonia gas sensors based on electrodeposited polypyrrole – Cobalt phthalocyanine hybrid films, Talanta, 2013, vol. 117, p. 45. https://doi.org/10.1016/j.talanta.2013.08.047
  12. Sizun, T., Patois, T., Bouvet, M., and Lakard, B., Microstructured electrodeposited polypyrrole-phthalocyanine hybrid material, from morphology to ammonia sensing, J. Mater. Chem., 2012, vol. 22, no. 48, p. 25246. https://doi.org/10.1039/c2jm35356c
  13. Nguyen, V.C. and Potje-Kamloth, K., Electrical and chemical sensing properties of doped polypyrrole/gold Schottky barrier diodes, Thin Solid Films, 1999, vol. 338, no. 1–2, p. 142. https://doi.org/10.1016/S0040-6090(98)01060-8
  14. Nguyen, Van C. and Potje-Kamloth, K., Electrical and NOx gas sensing properties of metallophthalocyanine-doped polypyrrole/silicon heterojunctions, Thin Solid Films, 2001, vol. 392, no. 1, p. 113. https://doi.org/10.1016/S0040-6090(01)00837-9
  15. Petrov, A.A., Lukyanov, D.A., Kopytko, O.A., Novoselova, J.V., Alekseeva, E. V., and Levin, O. V., Inversion of the Photogalvanic Effect of Conductive Polymers by Porphyrin Dopants, Catalysts, 2021, vol. 11, no. 6, p. 729. https://doi.org/10.3390/catal11060729
  16. Грибкова, О.Л., Кабанова, В.А., Ягодин, А.В., Аверин, А.А., Некрасов, А.А. Водорастворимый фталоцианин с ионогенными группами как молекулярная матрица для электрополимеризации 3,4-этилендиокситиофена. Электрохимия. 2022. Т. 58. С. 711. [Gribkova, O.L., Kabanova, V.A., Yagodin, A.V., et al., Water-Soluble Phthalocyanine with Ionogenic Groups as a Molecular Template for Electropolymerization of 3,4-Ethylenedioxythiophene, Russ. J. Electrochem., 2022, vol. 58, p. 957.] https://doi.org/10.1134/S1023193522110076
  17. Liu, W., Jensen, T.J., Fronczek, F.R., Hammer, R.P., Smith, K.M., and Vicente, M.G.H., Synthesis and Cellular Studies of Nonaggregated Water-Soluble Phthalocyanines, J. Medic. Chem., 2005, vol. 48, no. 4, p. 1033. https://doi.org/10.1021/jm049375b
  18. Gribkova, O.L., Kabanova, V. A., and Nekrasov, A.A., Electrodeposition of thin films of polypyrrole-polyelectrolyte complexes and their ammonia-sensing properties, J. Solid State Electrochem., 2020, vol. 24, no. 11, p. 3091. https://doi.org/10.1007/s10008-020-04766-0
  19. Kabanova, V., Gribkova, O., and Nekrasov, A., Poly(3,4-ethylenedioxythiophene) Electrosynthesis in the Presence of Mixtures of Flexible-Chain and Rigid-Chain Polyelectrolytes, Polymers, 2021, vol. 13, no. 22, p. 3866. https://doi.org/10.3390/polym13223866
  20. Lokesh, K.S. and Adriaens, A., Electropolymerization of palladium tetraaminephthalocyanine: Characterization and supercapacitance behavior, Dyes and Pigments, 2015, vol. 112, p. 192. https://doi.org/10.1016/j.dyepig.2014.06.034
  21. Aroca, R., Dilella, D.P., and Loutfy, R.O., Raman spectra of solid films-I. Metal-free phthalocyanine, J. Phys. and Chem. Solids, 1982, vol. 43, no. 8, p. 707. https://doi.org/10.1016/0022-3697(82)90235-9
  22. Gribkova, O.L., Kabanova, V.A., Iakobson, O.D., and Nekrasov, A.A., Spectroelectrochemical investigation of electrodeposited polypyrrole complexes with sulfonated polyelectrolytes, Electrochim. Acta, 2021, vol. 382, p. 138307. https://doi.org/10.1016/j.electacta.2021.138307
  23. Gribkova, O.L., Iakobson, O.D., Nekrasov, A.A., Cabanova, V.A., Tverskoy, V.A., Tameev, A.R., and Vannikov, A.V., Ultraviolet-Visible-Near Infrared and Raman spectroelectrochemistry of poly(3,4-ethylenedioxythiophene) complexes with sulfonated polyelectrolytes. The role of inter- and intra-molecular interactions in polyelectrolyte, Electrochim. Acta, 2016, vol. 222, p. 409. https://doi.org/10.1016/j.electacta.2016.10.193
  24. Potje-Kamloth, K., Chemical Gas Sensors Based on Organic Semiconductor Polypyrrole, Critical Rev. in Analytical Chem., 2002, vol. 32, no. 2, p. 121. https://doi.org/10.1080/10408340290765489
  25. Zafar, Q., Fatima, N., Karimov, K.S., Ahmed, M.M., and Sulaiman, K., Realizing broad-bandwidth visible wavelength photodiode based on solution-processed ZnPc/PC71BM dyad, Optical Mater., 2017, vol. 64, p. 131. https://doi.org/10.1016/j.optmat.2016.12.001
  26. Nath, D., Dey, P., Joseph, A.M., Rakshit, J.K., and Roy, J.N., CuPc/C60 heterojunction for high responsivity zero bias organic red-light photodetector, Appl. Phys. A: Mater. Sci. and Processing, 2020, vol. 126, no. 8, p. 627. https://doi.org/10.1007/s00339-020-03806-w

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Structure of zinc phthalocyaninate used in the work

Download (111KB)
3. Fig. 2. Cyclic voltammetry during the attempt of PPy layer deposition from aqueous solution of 0.01M pyrrole and 0.0025 M ZnPc on FTO electrode: without sublayer (a); with PPy-PAMPSNa sublayer (b); with PEDOT-PAMPSNa sublayer (c)

Download (275KB)
4. Fig. 3. Dynamics of change of current (I), charge (Q) and optical absorption spectra (A) during PS deposition of PPy-ZnPc layer from aqueous solution of 0.01 M pyrrole and 0.0025 M ZnPc on FTO electrode: (a) without sublayer (Epoly = 1.0 V); (b) with PPy-PAMPSNa sublayer (Epoly = 0. 8 V); (c) spectra (inset: change of absorbance at 750 nm depending on the charge used for Py electropolymerisation) during synthesis on the sublayer (numbers in the legend - time, s, from the beginning of synthesis)

Download (321KB)
5. Fig. 4. Dynamics of change in current (I), charge (Q), potential (E) and optical absorption spectra (A) during PS (a, c), Epoly = 0.85 V and GS (b, d), current density 0.09 mA/cm2 deposition of PPy-ZnPc layer from aqueous solution of 0.01 M pyrrole and 0.0025 M ZnPc on FTO electrode with PEDOT-PAMPSNa sublayer. In the spectra (c, d) the figures in the legend are the time, s, from the beginning of synthesis; in the insets are the change in absorbance at 750 nm as a function of the charge consumed for the electropolymerisation of Py

Download (433KB)
6. Fig. 5. AFM images and cross-sectional profiles along white lines of PPy-ZnPc samples obtained by potentiostatic polymerisation on PPy-PAMPSNa (a) and PEDOT-PAMPSNa (b) sublayers

Download (667KB)
7. Fig. 6. Absorption spectra of layers electrodeposited on FTO electrode: 1 - PPy-ZnPc on PEDOT-PAMPSNa sublayer; 2 - PPy-PAMPSNa; 3 - PEDOT-PAMPSNa sublayer

Download (89KB)
8. Fig. 7. Normalised (band intensity 986 cm-1) CR spectra under 632 nm laser excitation of samples electrodeposited on FTO-glass substrates: 1 - PPy-ZnPc on PPy-PAMPSNa sublayer; 2 - PPy-PAMPSNa. For comparison: 3 - arbitrarily normalised spectrum of the ZnPc layer deposited by solution watering on glass

Download (125KB)
9. Fig. 8. Normalised (991 cm-1 band intensity) CR spectra of samples electrodeposited on FTO-glass substrates under 632 nm laser excitation: 1 - PPy-ZnPc on PEDOT-PAMPSNa sublayer; 2 - PEDOT-PAMPSNa. For comparison: 3 - arbitrarily normalised CR spectrum of the ZnPc layer deposited by solution watering on glass

Download (123KB)

Copyright (c) 2024 Russian Academy of Sciences