Adsorption of Human Immunodeficiency Virus Gag Polyprotein on Lipid Membranes: a Study by the Inner Field Compensation Method

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The Gag polyprotein is the main structural protein of the human immunodeficiency virus (HIV). It is responsible for the assembly of new viral particles in the infected cell. This process occurs on the plasma membrane of the cell and is largely regulated by the interactions of Gag with the lipid matrix of the cell membrane. In this work, using the inner field compensation method and electrokinetic measurements of the zeta potential in a liposome suspension, we studied the binding of the HIV non-myristoylated Gag polyprotein to model lipid membranes. To quantify protein affinity for charged and uncharged lipid bilayers, Gag adsorption isotherms were obtained and binding constants were calculated. It has been shown that this protein is able to interact with both types of membranes with approximately the same binding constants (KPC = 8 × 106 M–1 and KPS = 3 × 106 M–1). However, the presence of the anionic lipid phosphatidylserine in the lipid bilayer significantly enhances protein adsorption on the membrane due to the additional influence of the surface potential jump it creates near the membrane (KPSeff = 37.2 × 106 M–1). Thus, the interaction of Gag with membranes is determined rather by hydrophobic interactions and the area per lipid molecule, while the presence of a negative surface charge only increases the concentration of the positively charged protein near the membrane.

Full Text

Restricted Access

About the authors

Z. G. Denieva

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Author for correspondence.
Email: zaret03@mail.ru
Russian Federation, Moscow

K. I. Makrinsky

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: zaret03@mail.ru
Russian Federation, Moscow

Yu. A. Ermakov

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: zaret03@mail.ru
Russian Federation, Moscow

O. V. Batishchev

A.N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

Email: olegbati@gmail.com
Russian Federation, Moscow

References

  1. Bell, N.M. and Lever, A.M., HIV Gag polyprotein: processing and early viral particle assembly, Trends in microbiology, 2013, vol. 21, no. 3, p. 136. https://doi.org/10.1016/j.tim.2012.11.006
  2. Freed, E., HIV-1 assembly, release and maturation, Nat. Rev. Microbiol., 2015, vol. 13, p. 484. https://doi.org/10.1038/nrmicro3490
  3. Saad, J.S., Miller, J., Tai, J., Kim, A., Ghanam, R.H., and Summers, M.F., Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly, Proc. National Acad. Sci. United States of America, 2006, vol. 103, no. 30, p. 11364. https://doi.org/10.1073/pnas.0602818103
  4. Mercredi, P. Y., Bucca, N., Loeliger, B., Gaines, C.R., Mehta, M., Bhargava, P., Tedbury, P.R., Charlier, L., Floquet, N., Muriaux, D., Favard, C., Sanders, C.R., Freed, E.O., Marchant, J., and Summers, M.F., Structural and Molecular Determinants of Membrane Binding by the HIV-1 Matrix Protein, J. molecular biology, 2006, vol. 428, no. 8, p. 1637. https://doi.org/10.1016/j.jmb.2016.03.005
  5. Mammano, F., Ohagen, A., Höglund, S., and Göttlinger, H.G., Role of the major homology region of human immunodeficiency virus type 1 in virion morphogenesis, J. virology, 1994, vol. 68, no. 8, p. 4927. https://doi.org/10.1128/JVI.68.8.4927-4936.1994
  6. Dalton, A.K., Ako-Adjei, D., Murray, P.S., Murray, D., and Vogt, V.M., Electrostatic interactions drive membrane association of the human immunodeficiency virus type 1 Gag MA domain, J. virology, 2007, vol. 81, no. 12, p. 6434. https://doi.org/10.1128/JVI.02757-06.
  7. Chukkapalli, V., Hogue, I.B., Boyko, V., Hu, W.S., and Ono, A., Interaction between the human immunodeficiency virus type 1 Gag matrix domain and phosphatidylinositol-(4,5)-bisphosphate is essential for efficient gag membrane binding, J. virology, 2008, vol. 82, no. 5, p. 2405. https://doi.org/10.1128/JVI.01614-07
  8. Barros, M., Heinrich, F., Datta, S.A.K., Rein, A., Karageorgos, I., Nanda, H., and Lösche, M., Membrane Binding of HIV-1 Matrix Protein: Dependence on Bilayer Composition and Protein Lipidation, J. virology, 2016, vol. 90, no. 9, p. 4544. https://doi.org/10.1128/JVI.02820-15
  9. Freed, E.O., HIV-1 Gag: flipped out for PI(4,5)P(2), Proc. National Acad. Sci. United States of America, 2006, vol. 103, no. 30, p. 11101. https://doi.org/10.1073/pnas.0604715103
  10. Yeung, T., Heit, B., Dubuisson, J.F., Fairn, G.D., Chiu, B., Inman, R., Kapus, A., Swanson, M., and Grinstein, S., Contribution of phosphatidylserine to membrane surface charge and protein targeting during phagosome maturation, J. cell biology, 2009, vol. 185, no. 5, p. 917. https://doi.org/10.1083/jcb.200903020
  11. Ermakov, Y.A., Averbakh, A.Z., Yusipovich, A.I., and Sukharev, S., Dipole potentials indicate restructuring of the membrane interface induced by gadolinium and beryllium ions, Biophys. J., 2001, vol. 80, no. 4, p. 1851. https://doi.org/10.1016/S0006-3495(01)76155-3
  12. Ermakov, Y.A., Kamaraju, K., Sengupta, K., and Sukharev, S., Gadolinium ions block mechanosensitive channels by altering the packing and lateral pressure of anionic lipids, Biophysical Journal, 2010, vol. 98, no. 6, p. 1018. https://doi.org/10.1016/j.bpj.2009.11.044
  13. Marukovich, N., McMurray, M., Finogenova, O., Nesterenko, A., Batishchev, O., and Ermakov, Y., Interaction of Polylysines with the Surface of Lipid Membranes, Advances in Planar Lipid Bilayers and Liposomes, 2013, vol. 17, p. 139. https://doi.org/10.1016/B978-0-12-411516-3.00006-1.
  14. Ермаков, Ю.А., Соколов, В.С., Акимов, С.А., Батищев, О.В. Физико-химические и электрохимические аспекты функционирования биологических мембран. Журн. физ. химии. 2020. Т. 94. № 3. С. 342. [Ermakov, Y.A., Sokolov, V.S., Akimov, S.A., and Batishchev O.V., Physicochemical and Electrochemical Aspects of the Functioning of Biological Membranes, Russ. J. Phys. Chem., 2020, vol. 94, p. 471.] https://doi.org/10.1134/S0036024420030085
  15. Kempf, N., Postupalenko, V., Bora, S., Didier, P., Arntz, Y., de Rocquigny, H., and Mély, Y., The HIV-1 nucleocapsid protein recruits negatively charged lipids to ensure its optimal binding to lipid membranes, J. virology, 2015, vol. 89, no. 3, p. 1756. https://doi.org/10.1128/JVI.02931-14
  16. Perez-Caballero, D., Hatziioannou, T., Martin-Serrano, J., and Bieniasz, P. D., Human immunodeficiency virus type 1 matrix inhibits and confers cooperativity on gag precursor-membrane interactions, J. virology, 2004, vol. 78, no. 17, p. 9560. https://doi.org/10.1128/JVI.78.17.9560-9563.2004
  17. Ono, A., Demirov, D., and Freed, E.O., Relationship between human immunodeficiency virus type 1 Gag multimerization and membrane binding, J. virology, 2000, vol. 74, no. 11, p. 5142. https://doi.org/10.1128/jvi.74.11.5142-5150.2000
  18. Tran, R.J., Lalonde, M.S., Sly, K.L., and Conboy, J.C., Mechanistic Investigation of HIV-1 Gag Association with Lipid Membranes, J. Phys. Chem., B, 2019, vol. 123, no. 22, p. 4673. https://doi.org/10.1021/acs.jpcb.9b02655
  19. Gui, D., Gupta, S., Xu, J., Zandi, R., Gill, S., Huang, I.C., Rao, A. L., and Mohideen, U., A novel minimal in vitro system for analyzing HIV-1 Gag-mediated budding, J. biolog. Phys., 2015, vol. 41, no. 2, p. 135. https://doi.org/10.1007/s10867-014-9370-z
  20. Vlach, J. and Saad, J. S., Trio engagement via plasma membrane phospholipids and the myristoyl moiety governs HIV-1 matrix binding to bilayers, Proc. National Acad. Sci. United States of America, 2013, vol. 110, no. 9, p. 3525. https://doi.org/10.1073/pnas.1216655110
  21. Ермаков, Ю.А. Равновесие ионов вблизи липидных мембран – эмпирический анализ простейшей модели. Коллоид. журн. 2000. № 6. C. 437. [Ermakov, Yu.A., Equilibrium of ions near lipid membranes – empirical analysis of the simplest model. Colloid Journal (in Russian), 2000, no. 6, p. 437.]
  22. Sokolov, V.S. and Kuz'min, V.G., Measurement of differences in the surface potentials of bilayer membranes according to the second harmonic of a capacitance current, Biofizika, 1980, vol. 25, no. 1, p. 170.
  23. Ермаков, Ю.А. Первые шаги в регистрации и интерпретации граничного потенциала липидных мембран. Биол. мембраны: Журн. мембранной и клеточной биологии. 2022. T. 39. № 5. С. 337. [Ermakov, Y.A., First Steps in Detection and Interpretation of the Lipid Membrane Boundary Potential, Biochem. Moscow Suppl. Ser. A, 2022, vol. 16, p. 261.] https://doi.org/10.1134/S1990747822050051
  24. Datta, S.A. and Rein, A., Preparation of recombinant HIV-1 gag protein and assembly of virus-like particles in vitro, Methods in molecular biology (Clifton, N.J.), 2009, vol. 485, p. 197. https://doi.org/10.1007/978-1-59745-170-3_14
  25. Mueller, P., Rudin, D.O., Tien, H.T., and Wescott, W.C., Methods for the formation of single bimolecular lipid membranes in aqueous solution, J. Phys. Chem., 1963, vol. 67, no. 2, p. 534. https://doi.org/10.1021/j100796a529
  26. Jesorka, A. and Orwar, O., Liposomes: technologies and analytical applications, Annual rev. analyt. chem. (Palo Alto, Calif.), 2008, vol. 1, p. 801. https://doi.org/10.1146/annurev.anchem.1.031207.112747
  27. Ermakov, Y.A. and Sokolov, V.S., Boundary potentials of bilayer lipid membranes: methods and interpretations, Membrane Sci. and Technol. Ser.-, 2003, vol. 7, p. 109. https://doi.org/10.1016/S0927-5193(03)80027-X
  28. Batishchev, O.V., Shilova, L.A., Kachala, M.V., Tashkin, V.Y., Sokolov, V.S., Fedorova, N.V., Baratova, L.A., Knyazev, D.G., Zimmerberg, J., and Chizmadzhev, Y.A., pH-Dependent Formation and Disintegration of the Influenza A Virus Protein Scaffold To Provide Tension for Membrane Fusion, J. virology, 2015, vol. 90, no. 1, p. 575. https://doi.org/10.1128/JVI.01539-15
  29. Gouy, M., Sur la constitution de la charge électrique à la surface d’un electrolyte, J. Phys. Theor. Appl., 1910, vol. 9, no. 1, p. 457. https://doi.org/10.1051/jphystap:019100090045700
  30. Chapman, D.L., LI. A contribution to the theory of electrocapillarity, London, Edinburgh, and Dublin Philosoph. Magazine and J. Sci., 1913, vol. 25, no. 148, p. 475. https://doi.org/10.1080/14786440408634187
  31. Amory, D.E. and Dufey, J. E., Model for the electrolytic environment and electrostatic properties of biomembranes, J. bioenergetics and biomembranes, 1985, vol. 17, no. 3, p. 151. https://doi.org/10.1007/BF00751059
  32. Eisenberg, M., Gresalfi, T., Riccio, T., and McLaughlin, S., Adsorption of monovalent cations to bilayer membranes containing negative phospholipids, Biochemistry, 1979, vol. 18, no. 23, p. 5213. https://doi.org/10.1021/bi00590a028
  33. Ermakov, Y.A., The determination of binding site density and association constants for monovalent cation adsorption onto liposomes made from mixtures of zwitterionic and charged lipids, Biochimica et biophysica acta, 1990, vol. 1023, no. 1, p. 91. https://doi.org/10.1016/0005-2736(90)90013-e
  34. McLaughlin, S., The electrostatic properties of membranes, Annual rev. biophys. and biophys. chem., 1989, vol. 18, p. 113. https://doi.org/10.1146/annurev.bb.18.060189.000553
  35. Князев, Д.Г., Радшхин, В.А., Соколов, В.С. Изучение межмолекулярных взаимодействий белков М1 вируса гриппа А на поверхности модельной липидной мембраны методом компенсации внутримембранного поля. Биол. мембраны: Журн. мембранной и клеточной биологии. 2008. T. 25. № 6. С. 488. [Knyazev, D.G., Radyukhin, V.A., and Sokolov, V.S., Intermolecular interactions of influenza M1 proteins on the model lipid membrane surface: A study using the inner field compensation method, Biochem. Moscow Suppl. Ser. A, 2009, vol. 3, p. 81.] https://doi.org/10.1134/S1990747809010115
  36. Bieniasz, P.D., The cell biology of HIV-1 virion genesis, Cell host & microbe, 2009, vol. 5, no. 6, p. 550. https://doi.org/10.1016/j.chom.2009.05.015
  37. Chukkapalli, V. and Ono, A., Molecular determinants that regulate plasma membrane association of HIV-1 Gag, J. molecular biology, 2011, vol. 410, no. 4, p. 512. https://doi.org/10.1016/j.jmb.2011.04.015
  38. Sokolov, V.S., Sokolenko, E.A., Sokolov, A.V., Dontsov, A.E., Chizmadzhev, Yu.A., and Ostrovsky, M.A., Interaction of pyridinium bis-retinoid (A2E) with bilayer lipid membranes, J. Photochem. and Photobiol. B: Biology, 2007, vol. 86, no. 2, p. 177. https://doi.org/10.1016/j.jphotobiol.2006.09.006
  39. Bähr, G., Diederich, A., Vergères, G., and Winterhalter, M., Interaction of the effector domain of MARCKS and MARCKS-related protein with lipid membranes revealed by electric potential measurements, Biochemistry, 1998, vol. 37, no. 46, p. 16252. https://doi.org/10.1021/bi981765a
  40. Fogarty, K.H., Berk, S., Grigsby, I.F., Chen, Y., Mansky, L.M., and Mueller, J.D., Interrelationship between cytoplasmic retroviral Gag concentration and Gag-membrane association, J. molecular biology, 2014, vol. 426, no. 7, p. 1611. https://doi.org/10.1016/j.jmb.2013.11.025
  41. Monje-Galvan, V. and Voth, G.A., Binding mechanism of the matrix domain of HIV-1 gag on lipid membranes, eLife, 2020, vol. 9, p. e58621. https://doi.org/10.7554/eLife.58621
  42. GRAHAME, D.C., The electrical double layer and the theory of electrocapillarity, Chem. Rev., 1947, vol. 41, no. 3, p. 441. https://doi.org/10.1021/cr60130a002
  43. McLaughlin, S., Mulrine, N., Gresalfi, T., Vaio, G., and McLaughlin, A., Adsorption of divalent cations to bilayer membranes containing phosphatidylserine, J. general physiol., 1981, vol. 77, no. 4, p. 445. https://doi.org/10.1085/jgp.77.4.445

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the HIV particle (a). Schematic representation of structural elements of Gag polyprotein (b)

Download (229KB)
3. Fig. 2. Dependence of surface potential values of liposomes from the mixture DPhPC:DPhPS 80:20 (mol %) on the ionic strength of KCl solution. The theoretical curve is constructed by the combination of equations (1)-(3)

Download (55KB)
4. Fig. 3. Determination of the surface charge density on BLM made of DPhPC:DPhPS 80:20 mixture (mol %). (a) Change of the boundary potential difference as a result of successive addition of 1 M KCl to one of the compartments of the experimental cell. The arrows (from left to right) correspond to changes in the ionic strength of the solution to 20, 30, 50 and 80 mM. (b) Dependence of the increment of the boundary potential difference on the BLM on the KCl concentration. (c) Dependence of the surface potential on the BLM on the concentration of KCl in the cell. The theoretical curve is constructed by equations (1)-(3)

Download (94KB)
5. Fig. 4. Kinetics of the change in the boundary potential difference on the BLM when Gag is added to one side of the membrane at zero time point. BLM was formed from DPhPC in buffer solution of 10 mM KCl, 5 mM HEPES, 0.1 mM EDTA, pH 7.2. The concentration of Gag in the solution was 100 nM (solid curve) and 200 nM (dashed curve)

Download (67KB)
6. Fig. 5. Boundary potential difference increment measured during adsorption of Gag protein on the surface of lipid membrane made of DPhPC (triangles) and DPhPC:DPhPS 80:20 mol% (squares) by the FWC method. Each point corresponds to a stationary level of the boundary potential difference. The range of Gag concentrations in solution is from 10 to 200 nM. The measurement error is obtained as the standard deviation of 3-5 independent experiments

Download (54KB)
7. Fig. 6. Dependence of the surface potential on the membrane made of DPhPC:DPhPS 80:20 (mol %) on the Gag concentration, approximated by the system of equations (3), (6) and (7). The theoretical curves are constructed for the charge number of Gag zGag from 1 to 3

Download (81KB)

Copyright (c) 2024 Russian Academy of Sciences