Characteristics of power supercapacitor with electrodes made of composite carbon nanopaper based on carbon nanotubes and resorcinol-formaldehyde xerogel

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The nanocomposite of a resorcinol-formaldehyde xerogel and carbon nanotubes after carbonation was obtained in the form of a composite carbon nanopaper (CCNP) with the thickness of 100–300 microns, the density from 0.1 g/cm3 to 0.5 g/cm3 and the electronic conductivity of more than 10 S/cm. The microporous structure of the nanopaper is formed by carbonized resorcinol-formaldehyde xerogel, and the mesoporous structure is formed by the nanotube framework. Previously, the characteristics of nanopaper electrodes in an aqueous electrolyte of 1 M H2SO4 were measured, where the maximum capacitance was 155 F/g (56 F/cm3). To work with an organic electrolyte, a method for activating CCNP with potassium hydroxide has been developed. In this paper the characteristics of electrodes made of activated nanopaper (a-CCNP) in an organic electrolyte 1 M 1,1-Dimethylpyrrolidinium tetrafluoroborate (DMPBF4)/acetonitrile solution were measured. The capacitance in this electrolyte has been reached 70 F/g (27 F/cm3). According to measurements on a laboratory assembly of a symmetrical supercapacitor (SC) with electrodes made of CCNP, the characteristics are calculated when the SC operates in the mode of short pulse switching with an efficiency of EF = 95%. In an aqueous electrolyte of 1 M H2SO4 (U0 = 1.0 V), the volumetric energy density was E0.95,SC = 0.9 Wh/L and the volumetric power density was P0.95,SC = 2.1 kW/L. In 1 M DMPBF4/acetonitrile electrolyte (U0 = 2.7 V), the design characteristics of the capacitor were: volumetric energy density E0.95,SC = 3.8 Wh/L and volumetric power density P0.95,SC = 2.0 kW/L. The specific characteristics of power SCs are compared with electrodes made of activated CCNP and of other carbon materials. In mass production, nanocomposite electrodes are estimated to be cheaper than activated carbon microfibers and significantly cheaper than graphene electrodes.

About the authors

A. V. Krestinin

Federal Research Center of Problems of Chemical Physics and Medical Chemistry, RAS (FRC PCPMC RAS)

Author for correspondence.
Email: kresti@icp.ac.ru
Russian Federation, Moscow oblast, Chernogolovka, 142432

A. B. Tarasenko

United Institute of High Temperatures Russian Academy of Sciences (UIHT RAS)

Email: kresti@icp.ac.ru
Russian Federation, Moscow

S. A. Kochanova

United Institute of High Temperatures Russian Academy of Sciences (UIHT RAS)

Email: kresti@icp.ac.ru
Russian Federation, Moscow

S. A. Kislenko

United Institute of High Temperatures Russian Academy of Sciences (UIHT RAS)

Email: kislenko@ihed.ras.ru
Russian Federation, Moscow

References

  1. Pandolfo, A.G. and Hollencamp, A.F., Carbon properties and their role in supercapacitors, J. Power Sources, 2006, vol. 157, p. 11.
  2. Simon, P. and Gogotsi, Y., Capacitive Energy Storage in Nanostructured Carbon_Electrolyte Systems, Acc. Chem. Res., 2013, vol. 46, no. 5, p. 1094.
  3. Bagotsky, V.S., Skundin, A.M., and Volfkovich, Yu.M., Electrochemical Power Sources. Batteries, Fuel Cells, Supercapacitors. N.J. Jhon Wiely & Sons Inc. Publisher, 2015.
  4. Burke, A., Ultracapacitors: why, how, and where is the technology, J. Power Sources, 2000, vol. 91, p. 37.
  5. Chen, X., Paul, R., and Dai, L., Carbon-based supercapacitors for efficient energy storage, National Sci. Rev. 4: 453–489, 2017 https://doi.org/10.1093/nsr/nwx009
  6. Burke, A. and Miller, M., The power capability of ultracapacitors and lithium batteries for electric and hybrid vehicle applications, J. Power Sources, 2011, vol. 196, p. 514.
  7. Burke, A. and Miller, M., Testing of electrochemical capacitors: capacitance, resistance, energy density, and power capability, Electrochim. Acta, 2010, vol. 55, p. 7538.
  8. Gogotsy, Y. and Simon, P., True performance metrics in electrical energy storage, Science, 2011, vol. 334, p. 917.
  9. Mayer, S.T., Pekalo, R.W., and Kaschmitter, J.L., The Aerocapacitor: An Electrochemical Double-Layer Energy-Storage Device, J. Electrochem. Soc., 1993, vol. 42, no. 2, p. 446.
  10. Yang, X., Cheng, Ch., Wang, Y., Qiu, L., and Li, D., Liquid-Mediated Dense Integration of Graphene Materials for Compact Capacitive Energy Storage, Science, 2013, vol. 341, p. 534.
  11. Xu, Y., Lin, Z., Zhong, X., Huang, X., Weiss, N.O., Huang, Y., and Duan, X., Holey graphene frameworks for highly efficient capacitive energy storage, Nat. Commun., 2014, vol. 5, p. 4554.
  12. Zhu, Y., Murali, Sh., Stoller, M.D., Ganesh, K.J., Cai, W., Ferreira, P.J., Pirkle, A., Wallace, R.M., Cychosz, K.A., Thommes, M., Su, D., Stach, E.A., and Ruoff, R.S., Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, 2011, vol. 332, p. 1537.
  13. Probstle, H., Schmitt, C., and Fricke, J., Button cell supercapacitors with monolithic carbon aerogels, J. Power Sources, 2000, vol. 105, p. 189.
  14. Futaba, D.N., Hata, K., Yamada, T., Hiraoka, T., Hayamizu, Y., Kakudate, Y., Tanaike, O., Hatori, H., Yumura, M., and Iijima, S., Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes, Nature mater., 2006, vol. 51, p. 987.
  15. Yoon, Y., Lee, K., Kwon, S., Seo, S., Yoo, H., Kim, S., Shin, Y., Park, Y., Kim, D., Choi, J.–Y., and Lee, H., Sheets Spatially and Densely Piled for Fast Ion Diffusion in Compact Supercapacitors, ACS Nano, 2014, vol. 8, p. 436.
  16. Shi, H., Activated carbons and double layer capacitance, Electrochim. Acta, 1996, vol. 41, no. 10, p. 1633.
  17. Stoller, M. D. and Ruoff, R.S., Best practice methods for determining an electrode materials performance for ultracapacitors, Energy Environ. Sci., 2010, vol. 3, p. 1294.
  18. Bordjiba, M., Mohamedi, L., and Dao, H., Synthesis and electrochemical capacitance of binderless nanocomposite electrodes formed by dispersion of carbon nanotubes and carbon aerogels, J. Power Sourses, 2007, vol. 172, p. 991.
  19. An, K.H., Kim, W.S., Park, Y.S., Moon, J.–M., Bae, D.J., Lim, S.Ch., Lee, Y.S., and Lee, Y.H., Electrochemical Properties of High-Power Supercapacitors Using Single-Walled Carbon Nanotube Electrodes, Adv. Funct. Mater., 2001, vol. 11, no. 5, p. 387.
  20. Izadi-Najafabadi, A., Yasuda, S., Kobashi, K., Yamada, T., Futaba, D.N., Hatori, H., Yumura, M., Iijima, S., and Hata, K., Extracting the Full Potential of Single-Walled Carbon Nanotubes as Durable Supercapacitor Electrodes Operable at 4 V with High Power and Energy Density”, Adv. Mater., 2010, vol. 22, p. 235.
  21. Крестинин, А.В., Кнерельман, Е.И., Дремова, Н.Н., Голодков, О.Н. Углеродная нанобумага из нанокомпозита углеродные нанотрубки/резорцин-формальдегидный ксерогель для электрохимических суперконденсаторов. Электрохимия. 2023. Т. 59. С. 517. [Krestinin, A. V., Knerel’man, E. I., Dremova, N. N., and Golodkov, O. N., Carbon Nanopaper Produced from Carbon Nanotubes/Resorcinol-formaldehyde Xerogel Nanocomposite for Electrochemical Supercapasitors, Russ. J. Electrochem., 2023, vol. 59, p. 666.] https://doi.org/10.1134/S1023193523090082
  22. Вольфкович, Ю.М., Рычагов, А.Ю., Сосенкин, В.Е. Влияние пористой структуры на электрохимические характеристики суперконденсатора с нанокомпозитными электродами на основе углеродных нанотрубок и резорцин-формальдегидного ксерогеля. Электрохимия. 2022. Т. 58. С. 496. [Vol’fkovich, Yu.M., Rychagov, A.Yu., and Sosenkin, V.E., Effect of the Porous Structure on the Electrochemical Characteristics of Supercapacitor with Nanocomposite Electrodes Based on Carbon Nanotubes and Resorcinol-Formaldehyde Xerogel, Russ. J. Electrochem., 2022, vol. 58, p. 730.] https://doi.org/10.1134/S1023193522090142
  23. https://ocsial.com
  24. Крестинин, А.В., Дремова, Н.Н., Кнерельман, Е.И., Блинова, Л.Н., Жигалина, В.Г., Киселев, Н.А. Характеризация ОСУНТ-продуктов Российского производства и перспективы их промышленного применения. Рос. нанотехнологии. 2015. Т. 10. № 7–8. С. 30. [Krestinin, A.V., Dremova, N.N., Knerel’man, E.I., Blinova, L.N., Zhigalina, V.G., and Kiselev, N.A., Characterization of SWCNT Products Manufactured in Russia and the Prospects for Their Industrial Application, Nanotech. Russ., 2015, vol. 10, no. 7–8, p. 537.]
  25. Saliger, R., Reichenauer, G., and Fricke, J., Evolution of microporosity upon CO2-activation of carbon aerogels, In: Studies in Surface Science and Catalysis 128. K.K. Unger et al. (Editors). 2000 Elsevier Science B.V.
  26. Barranco, V., Lillo-Rodenas, M.A., Linares-Solano, A., Oya, A., Pico, F., Ibanez, J., Agullo-Rueda, F., Amarilla, J.M., and Rojo, J.M., Amorphous Carbon Nanofibers and Their Activated Carbon Nanofibers as Supercapacitor, J. Phys. Chem. C., 2010, vol. 114, p. 10302.
  27. International Electrotechnical Commission (IEC), Electric Double-layer Capacitors for Use in Hybrid Electric Vehicles – Test Methods for Electrical Characteristics, finalized April 2008.
  28. Power carbon Technology Co., Ltd.: http://www.powercarbon.co.kr/english/edlc/
  29. Azaıs, Ph., Duclaux, L., Florian, P., Massiot, D., Lillo-Rodenas, M-A., Linares-Solano, A., Peres, J-P., Jehoulet, Ch., and Beguin, F., Causes of supercapacitors ageing in organic electrolyte, J. Power Sources, 2007, vol. 171, p. 1046.
  30. Morimoto, T., Hiratsuka, K., Sanada, Y., and Kurihara, K., Electric double-layer capacitor using organic electrolyte, J. Power Sources, 1996, vol. 60, p. 239.
  31. Khomenko, V., Frackowiak, E., and Beguin, F., Determination of the specific capacitance of conducting polymer/nanotubes composite electrodes using different cell configurations, Electrochim. Acta, 2005, vol. 50, p. 2499.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Supplement
Download (1MB)

Copyright (c) 2024 Russian Academy of Sciences