Kinetics of Electrooxidation of Dimethyl Sulfoxide on a Platinum Electrode with Sulphuric Acid and Alkaline Solutions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In this work, an electrochemical study of the mechanism of electrooxidation of dimethyl sulfoxide (DMSO) on a platinum electrode in acidic and alkaline solutions was carried out. On stationary polarization anodic curves taken within DMSO in an acidic and alkaline environment, the processing currents are processed manually than in dissolved light. When analyzing linear sections of anodic voltammograms, the values of the coefficients of the Tafel equation were achieved. This definition defines the current density measurement range and conditions for the electrooxidation of DMSO on a platinum (Pt) electrode. Electrolysis was carried out at controlled current densities in an electrolyzer without separation and with separation of the anode and cathode compartments using MK-40, MA-40 membranes and a fluoropolymer sulfcationite membrane MF-4SK. The high electrical conductivity and selectivity of the membranes ensures good performance of the electrolysis process and obtains a high-purity final product. Raman spectroscopy and gas chromatography-mass spectrometry have confirmed that the products of DMSO electrooxidation in an acidic environment are dimethyl sulfone (DMSO2) and methanesulfonic acid (MSA), and in an alkaline environment DMSO2 and sodium methanesulfonate. The method of quantum chemical calculations showed good adsorption of DMSO molecules on platinum within the framework of the cluster model. It has been established that the formation of MSA on the surface of a platinum electrode at high current densities occurs via the radical ion mechanism, by breaking the C–S bond. Based on the experimental results obtained, a scheme for the electrochemical oxidation of dimethyl sulfoxide on platinum is proposed.

Full Text

Restricted Access

About the authors

K. O. Ibragimova

Dagestan State University

Author for correspondence.
Email: camila.06@mail.ru
Russian Federation, Makhachkala

Sh. Sh. Khidirov

Dagestan State University

Email: camila.06@mail.ru
Russian Federation, Makhachkala

S. I. Suleymanov

Dagestan State University; Far Eastern Federal Research Center of the Russian Academy of Sciences

Email: s.sagim.i@yandex.ru
Russian Federation, Makhachkala; Makhachkala

References

  1. Куриганова, А.Б., Леонтьева, Д.В., Смирнова Н.В. О механизме электрохимического диспергирования платины под действием переменного тока. Изв. АН. Сер. хим. 2015. Т. 64. С. 2769. [Kuriganova, A.B., Leontyeva, D.V., and Smirnova, N.V., On the mechanism of electrochemical dispersion of platinum under the action of alternating current, Russ. Chem. Bull., 2015, vol. 64, p. 2769.] doi: 10.1007/s11172-015-1223-9
  2. Вотченко, Е.Ю., Кубанова, М.С., Смирнова, Н.В. Петрий, О.А. Адсорбция и электроокисление диметилового эфира на платинированном платиновом электроде в сернокислом растворе. Электрохимия. 2010. Т. 46. С. 221. [Votchenko, E.Y., Kubanova, M.S., Smirnova, N.V., and Petrii O.A., Adsorption and electrooxidation of dimethyl ether on platinized platinum electrode in sulfuric acid solution, Russ. J. Eleсtrochem., 2010, vol. 46, p. 212.] doi: 10.1134/S1023193510020138
  3. Ахмедов, М.А., Хидиров, Ш.Ш. Электрокаталитическое окисление этанола на платиновом электроде в растворе метансульфокислоты. Электрохимия. 2022. Т. 58. С. 273. [Akhmedov, M.A. and Khidirov, Sh.Sh., Electrocatalytic oxidation of ethanol on the platinum electrode in solution of methanesulfonic acid, Russ. J. Electrochem., 2022, vol. 58, p. 482.] doi: 10.1134/S1023193522060039
  4. Du, К.S. and Huang, J.M., Electrochemical synthesis of methyl sulfoxides from thiophenols / thiols and dimethyl sulfoxide, Green Chem., 2018, vol. 20, p. 1141. doi: 10.1039/C7GC03864J
  5. Конарев, А.А. Электрохимический синтез метаниловой кислоты. Электрохимия. 2022. Т. 58. С. 40. [Konarev, A.A., Electrochemical synthesis of metanilic acid, Russ. J. Electrochem., 2022, vol. 58, p. 83.] doi: 10.1134/S1023193522010086
  6. Gasteiger, H.A., Markovic, N., Ross, P.N., and Cairns, E.J., Methanol electrooxidation on well-characterized Pt–Ru alloys, J. Phys. Chem., 1993, vol. 97, p. 12020. DOI :10.1021/j100148a030
  7. Мауэр, Д.К., Беленов, С.В., Никулин, А.Ю., Топорков, Н.В. Активность и стабильность PtCo/С электрокатализаторов окисления спиртов. Конденсированные среды и межфазные границы. 2023. Т. 25. С. 72. [Mauer, D.K., Belenov, S.V., Nikulin, A. Yu, and Toporkov, N.V., Activity and stability of PtCo/C electrocatalysts for alcohol oxidation, Condensed matter and interfaces. 2023, vol. 25, p. 72.] doi: 10.17308/kcmf.2023.25/10976
  8. Xianhong, Wu, Wang, Yi, and Zhong-Shuai, Wu, Design principle of electrocatalysts for the electrooxidation of organics, J. Chem., 1995, vol. 8, p. 2594. https://doi.org/10.1016/j.chempr.2022.07.010
  9. Vandermeeren, L., Leyssens, T., and Peeters, D., Theoretical study of the properties of sulfone and sulfoxide functional groups, J. Mol. Str. THEOCHEM, 2007, vol. 804, p. 1. doi: 10.1016/J.THEOCHEM.2006.10.006
  10. Zhang, L., Wang, Y., Xu, Z., and Li, H., Comparison of the blue-shifted C-D stretching vibrations for DMSO-d6 in imidazolium-based room temperature ionic liquids and in water, J. Phys. Chem. 2009, vol. 113, p. 5978. doi: 10.1021/jp900139z
  11. Izutsu, K., History of the use of nonaqueous media in electrochemistry, J. Solid State Electrochem., 2011, vol. 15, p. 1719. doi: 10.1007/s10008-010-1246-y
  12. Зюбина, Т.С., Сангинов, Е.А., Зюбин, А.С., Добровольский, Ю.А., Волохов, В.М., Ключарев, В.В., Букун, Н.Г. Полимерный электролит на основе мембраны Нафион, пластифицированной диметилсульфоксидом, и особенности транспорта в нем ионов щелочных металлов. Квантово-химическое моделирование. Журн. неорган. химии. 2020. Т. 65. С. 360. [Zyubina, T.S., Sanginov, E.A., Zyubin, A.S., Dobrovolskii, Y.A., Volokhov, V.M., Klyucharev, V.V., and Bukun, N.G., Polymeric electrolyte comprising a nafion membrane plasticized by dimethylsulfoxide and the transport specifics of alkali metal ions in it:guantum-chemical simulation, Russ. J. Inorg., 2020, vol. 65, p. 378.] DOI:
  13. Kayumov, R.R. Sanginov, E.A., Shmygleva, L.V., Radaeva, A.P., Karelin, A.I., Zyubin, A.S., Zyubina, T.S., Anokhin, D.V., Ivanov, D.A., and Dobrovolsky, Y.A., Ammonium form of Nafion plasticized by dimethyl sulfoxide, J. Electrochem. Soc., 2019, vol. 166, p. F3216. doi: 10.1149/2.0261907jes
  14. Каюмов, Р.Р., Сангинов, Е.А., Золотухина, Е.В., Герасимова, Е.В., Букун, Н.Г., Укше, А.Е., Добровольский, Ю.А. “Самоувлажняемые” нанокомпозитные мембраны Nafion/Pt для низкотемпературных твердополимерных топливных элементов. Альтернативн. энергетика и экология. 2013. С. 40. [Kayumov, R.R., Sanginov, E.A., Zolotukhina, E.V., Gerasimova, E.V., Bukun, N.G., Ukshe, A.E., and Dobrovolsky, Yu.A., “Self-humidifying” nanocomposite membrane Nafion/Pt for low-temperature solid polymer fuel cells, Al’ternativnaya Energetika i Ekologiya (in Russian), 2013, p. 40.]
  15. Sobkowski, J. and Szklarczyk, M., The behavior of high polar organic solvents on platinum electrodes-I. The study of adsorption and electrode reactions of dimethylsulphoxide, J. Electrochim. Acta, 1980, vol. 25, p. 383. https://doi.org/10.1016/0013-4686(80)87027-7
  16. Алексеева, Е.Ю., Сафонов, В.А., Петрий, О.А. Адсорбционное поведение органических соединений на границе раздела возобновляемый платиновый электрод/диметилсульфоксид. Электрохимия. 1985. Т. 21. С. 1305. [Alekseeva, E.Y., Safonov, V.A., and Petrii, O.A., The adsorption behavior of organic-compounds at the dimethylsulfoxide renewable platinum-electrode interface, Russ. J. Electrochem., 1985, vol. 21, p. 1305 (in Russian).]
  17. Кононова, Е.Г., Родникова, М.Н., Солонина, И.А., Широкова, Е.В. ИК-спектроскопия растворов диметилсульфоксида в моноэтаноламине. Журн. физ. химии. 2020. Т. 94. С. 1624. [Kononova, E.G., Rodnikova, M.N., Solonina I.A., and Shirokova E.V., Ir spectroscopy of solutions of dimethylsulfoxide in monoethanolamine, Russ. J. Phys. Chem., 2020, vol. 94, p. 2233.] doi: 10.31857/S0044453720110151
  18. Barone, V. and Cossi, M., Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model, J. Phys. Chem. А, 1998, vol. 102, p. 1995. https://doi.org/10.1021/jp9716997
  19. Tanaskovic, V., Pasti, I.A., Gavrilov, N., and Mentus, S.V., Dimethylsulfoxide as a modifier of platinum electrocatalytic activity toward oxygen reduction reaction in aqueous solutions: Combined theoretical and experimental study, Electroanalyt. Chem., 2014, vol. 1, p. 11. doi: 10.1016/j.jelechem.2013.12.020
  20. Kretschmer, U., The 33S Nuclear Quadrupole Hyperfine Coupling in the Rotational Spectrum of 33S Dimetilsulfoxide, Z. Naturforsch. A. doi: 10.1515/zna-1995–0706
  21. Vielstich, W. and Wasmus, S., Electro-oxidation and reduction of dimethylsulfoxide and sulfolane in aqueous acid solution-an on-line MS study, Electrochim. Acta, 1993, vol. 38, p. 175. https://doi.org/10.1016/0013-4686(93)85126-J
  22. Devadoss, V., Basha, C.A., and Jayaraman, K., Direct Oxidation of Dimethylsulphoxide and Reduction of Maleic Acid in Methanesulphonic Acid Medium, Int. J. Chem. React. Eng., 2009, vol. 7, p. 37. doi: 10.2202/1542-6580.2079
  23. Bilous, T.A., Tulskaya, A.G., and Matrunchyk, O.L., The choice of anode material for the electrochemical synthesis of peroxyacetic acid, J. Prom. Mat. and Proc. Appl. Electrochem., 2017, p. 270.
  24. Arsene, C., Barnes, I., and Becker, K.H., FT-IR product study of the photo-oxidation of dimethyl sulfide: Temperature and O2 partial pressure dependence, J. Phys. Chem. Chem. Phys., 1999, vol. 1, p. 5463. doi: 10.1039/a907211j
  25. Дамаскин, Б.Б., Некрасов, Л.Н., Петрий, О.А., Подловченко, Б.И., Стенина, Е.В., Федорович, Н.В., Электродные процессы в растворах органических соединений, ред. Б.Б. Дамаскин, М.: Изд-во МГУ, 1985. 312 с. [Damaskin, B.B., Nekrasov, L.N., Petriy, O.A., Podlovchenko, B.I., Stenina, E.V., and Fedorovich, N.V., Electrode processes in solutions of organic compounds (in Russian), Ed. Damaskin, B.B., Moscow: MSU Publishing House, 1985. 312 p.]
  26. Хибиев, Х.С., Омарова, К.О., Хидиров, Ш.Ш. Электрохимический синтез диметилсульфона и метансульфокислоты из диметилсульфоксида. Электрохимия. 2010. Т. 46. С. 1021. [Khibiev, K.S., Omarova, K.O., and Khidirov, Sh.Sh., Electrochemical synthesis of dimethilsulfone and methansulfonic acid from dimethilsulfoxide, Russ. J. Eleсtrochem., 2010, vol. 46, p. 960.] doi: 10.1134/S1023193510080161
  27. Хидиров, Ш.Ш., Омарова, К.О., Хибиев, Х.С. Способ получения диметилсульфона. Пат. 2377235 (Россия). 2009. [Khidirov, Sh.Sh., Omarova, K.O., and Khibiev, Kh.S. Method of producing dimethyl sulfone, Pat. 2377235 (Russia), 2009.]
  28. Хидиров, Ш.Ш., Омарова, К.О., Хибиев, Х.С. Способ получения метансульфокислоты. Пат. 2344126 (Россия). 2009. [Khidirov, Sh.Sh., Omarova, K.O., and Khibiev Kh.S. Method of producing methanesulfonic acid, Pat. 2344126 (Russia), 2009.]
  29. Хидиров, Ш.Ш., Ахмедов, М.А., Хибиев, Х.С., Омарова, К.О. Способ получения метансульфокислоты, Пат. 2496772 (Россия). 2013. [Khidirov, Sh.Sh., Akhmedov, M.A., Khibiev, Kh.S., and Omarova, K.O., Method of producing methanesulfonic acid, Pat. 2496772 (Russia), 2013.]
  30. Ахмедов, М.А. Ибрагимова, К.О., Хидиров, Ш.Ш. Сравнительная оценка адсорбции диметилсульфоксида и диметилсульфона на гладком платиновом электроде в кислой среде. Электрохимия. 2020. Т. 56. С. 416. [Akhmedov, M.A., Ibragimova, K.O., and Khidirov, Sh.Sh., Comparative evaluation of dimethylsulfoxide and dimethylsulfone adsorption on a smooth platinum electrode in acidic, Russ. J. Electrochem., 2020, vol. 56, p. 396.] doi: 10.31857/S0424857020040027
  31. Меньщиков, В.С., Беленов, С.В., Новомлинский, И.Н., Никулин, А.Ю., Гутерман, В.Е. Многокомпонентные платиносодержащие электрокатализаторы в реакциях восстановления кислорода и окисления метанола. Электрохимия. 2021. Т. 57. С. 331. [Menshchikov, V.S., Belenov, S.V., Novomlinsky I.N., Nikulin A.Y., and Guterman V.E., Multi-component platinum-containing electrocatalysts in the reactions of oxygen reduction and methanol oxidation, Russ. J. Electrochem., 2021, vol. 57, p. 587.] doi: 10.1134/S1023193521060070
  32. Arwa, A.D., Lionel, D., Florence, F., Aymen, А.А., Hayet, D., Thomas, L., Isabelle, S., Samir, T., and Abdeltif, A., Efficiency of DMSO as hydroxyl radical probe in an Electrochemical Advanced Oxidation Process -Reactive oxygen species monitoring and impact of the current density, Electrochim. Acta, 2017, vol. 246, p. 1. https://doi.org/10.1016/j.electacta.2017.06.024
  33. Курмаз, В.А., Коткин, А.С., Симбирцева, Г.В. Исследование электрохимического поведения вторичных продуктов захвата ОН-радикалов молекулами диметилсульфоксида методами лазерной фотоэмиссии. Вестн. моск. ун-та. Сер. 2. Химия. 2013. Т. 54. С. 321. [Kurmaz, V.A., Kotkin, A.S., and Simbirtseva, G.V., Investigation of Electrochemical Behavior of Secondary Products of Capture of OH Radicals by Dimethyl Sulfoxide Molecules Using Laser Photoemission, Moscow university chemistry bulletin 2013, vol. 68, no. 6, p. 273.] doi: 10.3103/S0027131413060023
  34. Kurmaz, V.A., Kotkin, A.S., and Simbirtseva, G.V., Laser photoemission generation and electrochemical study of methyl radicals as secondary products of OH radicals capture by dimethyl sulfoxide molecules, J. Solid State Electrochem., 2011, vol. 15, p. 2119. doi: 10.1007/s10008-011-1534-1
  35. Damjanovic, A., Dey, A., and Bockris, J.O’M., Kinetics of Oxygen Evolution and Dissolution on Rh, Ir and Pt-Rh Alloy Electrodes, J. Electrochem. Soc., 1966, vol. 113, p. 739. doi: 10.1149/1.2424104
  36. Тарасевич, М.Р. Обобщенное кинетическое уравнение электровосстановления молекулярного кислорода. Электрохимия. 1981. Т.17. С. 1208. [Tarasevich, M.R., Generalized kinetic equation for electroreduction of molecular oxygen, Russ. J. Electrochem., 1981, vol. 17, p. 1208 (in Russian).]
  37. Markovic, N.M., Gasteiger, H.A., Grgur, B.N., and Ross P.N., Oxygen reduction reaction on Pt(111): effects of bromide, J. Electroanalyt. Chem. 1999, vol. 467, p. 157. https://doi.org/10.1016/S0022-0728(99)00020-0
  38. Wang, J.X., Markovic, N.M., and Adzic, R.R., Kinetic Analysis of Oxygen Reduction on Pt(111) in Acid Solutions: Intrinsic Kinetic Parameters and Anion Adsorption Effects, J. Phys. Chem., 2004, vol. 108, p. 4127. https://doi.org/10.1021/jp037593v
  39. Тарасевич, М.Р., Хрущева, Е.И. Кинетика сложных электрохимических реакций, М.: Наука, 1981. 104 с. [Tarasevich, M.R. and Khrushcheva, E.I., Kinetics of complex electrochemical reactions (in Russian), Moscow: Science, 1981. 104 p.]
  40. Thompsett, D., Vielstich, W., Gasteiger, H.A., and Lamm, A.N.Y., Handbook of Fuel Cells – Fundamentals, Technology and Applications, John Wiley & Sons, Ltd., 2003, vol. 3, p. 467.
  41. Дамаскин, Б.Б., Петрий, О.А. Введение в электрохимическую кинетику, М.: Высшая школа, 1983. 400 с. [Damaskin, B.B. and Petrii, O.A., Introduction to electrochemical kinetics (in Russian), Moscow: Higher School, 1983. 400 p.
  42. Березина, Н.П. Электрохимия мембранных систем. Краснодар: Изд. Кубан. гос. ун-та, 2009. 137 с. [Berezina, N.P. Electrochemistry of membrane systems (in Russian), Krasnodar: Kuban State University, 2009. 137 p.]
  43. Becke, A.D., A new mixing of Hartree–Fock and local density‐functional theories, J. Phys. Chem., 1993, vol. 98, p. 1372. https://doi.org/10.1063/1.464304
  44. Weigenda, F. and Ahlrichs, R., Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy, J. Phys. Chem., 2005, p. 3297. https://doi.org/10.1039/B508541A
  45. Neese, F., The ORCA program system, WIREs Comput. Mol. Sci., 2012, vol. 2, p. 73. https://doi.org/10.1002/wcms.81
  46. Багоцкий, В.С. Основы электрохимии. М.: Химия, 1988. 400 с. [Bagotsky, V.S. Basics of Electrochemistry (in Russian), Moscow: Khimiya, 1988. 400 p. ]
  47. Сафонова, Т.Я., Смирнова, Н.В., Петрий О.А. Адсорбция этиленгликоля на платинированном платиновом электроде из кислых растворов. Электрохимия. 2006. Т. 42. С. 1104. [Safonova, T.Ya., Petrii, O.A., Smirnova, N.V., Adsorption of Polyethylene Glycol on Platinum Electrode from Acidic Solutions, Russ. J. Eleсtrochem., 2006, vol. 42, p. 995.] doi: 10.1134/S1023193506090163
  48. Ramakrishna, K., Raman, V.V.S.S.N., Rao, N.K., Prasad, A.V.S.S., and Reddy K.S., Development and validation of GC–MS method for the determination of methyl methanesulfonate and ethyl methanesulfonate in imatinib mesylate, J. Pharm. Biomed. Anal., 2008, vol. 46, p. 780. doi: 10.1016/j.jpba.2007.11.013
  49. Кириллов, С.А., Горобец, М.И., Гафуров, М.М., Рабаданов, К.Ш., Атаев, М.Б. Температурная зависимость ассоциативных равновесий ДМСО по спектрам комбинационного рассеяния. Журн. физ. хим. 2014. Т. 88. С. 140. [Kirillov, S.A., Gorobets, M.I., Gafurov, M.M., Rabadanov, K.S., and Ataev, M.B., Temperature Dependence of Associative Equilibria of DMSO According to Raman Scattering Spectra, Russ. J. Phys. Chem., 2014, vol. 88, p. 175.] doi: 10.1134/S0036024414010130
  50. Затикян, А.Л., Казоян, Е.А., Бонора, С., Маркарян, Ш.А. Колебательные спектры аскорбиновой кислоты в сульфоксидных растворителях. Журн. прикл. спектроскопии. 2008. Т. 75. С. 653. [Zatikyan, A.I., Kazoyan, E.A., Markaryan, S.A., and Bonora, S., Ascorbic acid vibrational spectra in sulfoxide solvents, J. Applied Spectroscopy, 2008, vol. 75, p. 664.] doi: 10.1007/s10812-008-9105-7
  51. Ахмедов, М.А., Хидиров, Ш.Ш., Сулейманов, С.И. Электрохимическое поведение диметилсульфона на платиновом электроде. Электрохимия. 2023. Т. 59. С. 674. [Akhmedov, M.A., Khidirov, Sh. Sh., and Suleimanov, S.I., Electrochemical Behavior of Dimethyl Sulfone on Platinum Electrode, Russ. J. Eleсtrochem., 2023, vol. 59, p. 856.] doi: 10.31857/S0424857023110038

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Anodic voltammetry voltammetry of Pt electrode in 0.5 M H2SO4 solution (1) and in the presence of DMSO, M: 0.5 (2), 1.0 (3), taken in steady-state mode

Download (50KB)
3. Fig. 2. Anodic voltammetry voltammetry of Pt electrode in 0.5 M NaOH solution (1) and in the presence of DMSO, M: 0.5 (2), 1.0 (3), taken in steady-state mode

Download (49KB)
4. Fig. 3. Degree of platinum surface filling by dimethylsulfoxide particles at volume concentration C, M: 0.001 (a), 0.01 (b), 0.1 (c), 0.2 (d), 0.5 (e) at potentials, V: 1.0 (1); 1.2 (2); 1.4 (3); 1.6 (4); 1.8 (5)

Download (344KB)
5. Fig. 4. Ion chromatogram of: a - dimethylsulfoxide, b - dimethylsulfone and c - ethyl ester of methanesulfonic acid (ethyl methanesulfonate). Solvent - CHCl3

Download (41KB)
6. Fig. 5. Experimental mass spectra: a - dimethylsulfoxide, b - dimethylsulfone and c - ethyl ester of methanesulfonic acid (ethyl methanesulfonate) with characteristic peaks. Solvent - CHCl3

Download (189KB)
7. Fig. 6. Raman spectra of dimethylsulfoxide (a) and products of electrooxidation of dimethylsulfoxide-dimethylsulfone (b) and methanesulfonic acid (c)

Download (139KB)
8. Fig. 7. Optimised structure of the DMSO molecule on the surface of the model cluster Pt8

Download (77KB)
9. Fig. 8. Scheme of electrooxidation of dimethylsulfoxide on Pt electrode

Download (79KB)

Copyright (c) 2024 Russian Academy of Sciences