3D microstructures for introducing radiation into photonic integrated circuits

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

One of the ways to implement high-performance data transmission and processing systems is photonic integrated circuits with improved optical input. The work examines the spectral dependences of 3D microstructures created by two-photon polymerization for inputting radiation in the range from 1480 to 1640 nm into photonic integrated circuits and makes a comparison with diffraction gratings.

全文:

受限制的访问

作者简介

D. Kolymagin

Moscow Institute of Physics and Technology (National Research University)

编辑信件的主要联系方式.
Email: kolymagin@phystech.edu
俄罗斯联邦, Dolgoprudny

A. Prokhodtsov

Moscow Institute of Physics and Technology (National Research University); National University of Science and Technology MISIS

Email: kolymagin@phystech.edu
俄罗斯联邦, Dolgoprudny; Moscow

D. Chubich

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
俄罗斯联邦, Dolgoprudny

R. Matital

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
俄罗斯联邦, Dolgoprudny

A. Kazantseva

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
俄罗斯联邦, Dolgoprudny

D. Emelyanov

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
俄罗斯联邦, Dolgoprudny

V. Kovalyuk

National University of Science and Technology MISIS; HSE University

Email: kolymagin@phystech.edu
俄罗斯联邦, Moscow; Moscow

A. Vitukhnovsky

Moscow Institute of Physics and Technology (National Research University); Lebedev Physical Institute of the Russian Academy of Sciences

Email: kolymagin@phystech.edu
俄罗斯联邦, Dolgoprudny; Moscow

G. Goltsman

HSE University; Russian Quantum Center

Email: kolymagin@phystech.edu
俄罗斯联邦, Moscow; Skolkovo

参考

  1. Jalali B., Fathpour S. // J. Lightwave Technol. 2006. V. 24. P. 4600.
  2. Мусорин А.И., Шорохов А.С., Чежегов А.А. и др. // УФН. 2023. Т. 193. № 12. С. 1284, Musorin A.I., Shorokhov A.S., Chezhegov A.A. et al. // Phys. Usp. 2023. V. 66. No. 12. P. 1211.
  3. Бессонов В.О., Розанов А.Д., Федянин А.А. // Письма в ЖЭТФ. 2024. Т. 119. № 3—4. С. 257, Bessonov V.O., Rozanov A.D., Fedyanin A.A. // JETP Lett. 2024. V. 119. No. 4. P. 261.
  4. Mu X., Wu S., Cheng L., Fu H.Y. // Appl. Sciences. 2020. V. 10. P. 1538.
  5. Marchetti R., Lacava C., Carroll L. et al. // Photon. Res. 2019. V. 7. No. 2. P. 201.
  6. Cheng L., Mao S., Li Z. et al. // Micromachines. 2020. V. 11. P. 666.
  7. Camposeo A., Persano L., Farsari M. et al. // Adv. Opt. Mater. 2019. V. 7. No. 1. Art. No.1800419.
  8. Matital R.P., Kolymagin D.A., Pisarenko A.V. et al. // Phys. Wave Phenom. 2023. V. 31. No. 4. P. 217.
  9. Деменев А.А., Ковальчук А.В., Полушкин Е.А., Шаповал С.Ю. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 212, Demenev A.A., Kovalchuk A.V., Polushkin E.A., Shapoval S.Yu. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 159.
  10. Gehring H., Eich A., Schuck C., Pernice W.H. // Opt. Letters. 2019. V. 44. No. 20. P. 5089.
  11. Витухновский А.Г., Звагельский Р.Д., Колымагин Д.А. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 7. С. 927, Vitukhnovsky A.G., Zvagelsky R.D., Kolymagin D.A. et al. //. Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 7. P. 760.
  12. Колымагин Д.А., Чубич Д.А., Щербаков Д.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1695, Kolymagin D.A., Chubich D.A., Shcherbakov D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1779.
  13. Matital R.P., Kolymagin D.A., Chubich D.A. et al. // J. Sci. Adv. Mater. Dev. 2022. V. 7. No. 2. Art. No. 100413.
  14. Schmid M., Ludescher D., Giessen H. // Opt. Mater. Express. 2019. V. 9. No. 12. P. 4564.

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Schematic representation of the experimental setup for measuring the transmission spectrum. Blue shows the path of optical fibers, gray, electrical, black, remote control of the laser.

下载 (351KB)
3. Fig. 2. 3D connector model prepared in DeScribe software.

下载 (421KB)
4. Fig. 3. Images of chip fragments for studying the efficiency of input of optical connectors, obtained using optical microscopy methods. Images of diffraction convectors and inputs for 3D microstructures before DLW photolithography (a). Images of outputs for 3D connectors before and after direct (3+1) D laser writing (b).

下载 (453KB)
5. Fig. 4. Confocal microscope image of the created 3D structures.

下载 (400KB)
6. Fig. 5. Connector transmission graphs. Gray curve is the transmission of a waveguide with a grating. Black curve is the transmission of a waveguide with two 3D connectors for input/output of radiation.

下载 (236KB)

版权所有 © Russian Academy of Sciences, 2024