3D microstructures for introducing radiation into photonic integrated circuits

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

One of the ways to implement high-performance data transmission and processing systems is photonic integrated circuits with improved optical input. The work examines the spectral dependences of 3D microstructures created by two-photon polymerization for inputting radiation in the range from 1480 to 1640 nm into photonic integrated circuits and makes a comparison with diffraction gratings.

Full Text

Restricted Access

About the authors

D. А. Kolymagin

Moscow Institute of Physics and Technology (National Research University)

Author for correspondence.
Email: kolymagin@phystech.edu
Russian Federation, Dolgoprudny

A. I. Prokhodtsov

Moscow Institute of Physics and Technology (National Research University); National University of Science and Technology MISIS

Email: kolymagin@phystech.edu
Russian Federation, Dolgoprudny; Moscow

D. А. Chubich

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russian Federation, Dolgoprudny

R. P. Matital

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russian Federation, Dolgoprudny

A. V. Kazantseva

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russian Federation, Dolgoprudny

D. P. Emelyanov

Moscow Institute of Physics and Technology (National Research University)

Email: kolymagin@phystech.edu
Russian Federation, Dolgoprudny

V. V. Kovalyuk

National University of Science and Technology MISIS; HSE University

Email: kolymagin@phystech.edu
Russian Federation, Moscow; Moscow

A. G. Vitukhnovsky

Moscow Institute of Physics and Technology (National Research University); Lebedev Physical Institute of the Russian Academy of Sciences

Email: kolymagin@phystech.edu
Russian Federation, Dolgoprudny; Moscow

G. N. Goltsman

HSE University; Russian Quantum Center

Email: kolymagin@phystech.edu
Russian Federation, Moscow; Skolkovo

References

  1. Jalali B., Fathpour S. // J. Lightwave Technol. 2006. V. 24. P. 4600.
  2. Мусорин А.И., Шорохов А.С., Чежегов А.А. и др. // УФН. 2023. Т. 193. № 12. С. 1284, Musorin A.I., Shorokhov A.S., Chezhegov A.A. et al. // Phys. Usp. 2023. V. 66. No. 12. P. 1211.
  3. Бессонов В.О., Розанов А.Д., Федянин А.А. // Письма в ЖЭТФ. 2024. Т. 119. № 3—4. С. 257, Bessonov V.O., Rozanov A.D., Fedyanin A.A. // JETP Lett. 2024. V. 119. No. 4. P. 261.
  4. Mu X., Wu S., Cheng L., Fu H.Y. // Appl. Sciences. 2020. V. 10. P. 1538.
  5. Marchetti R., Lacava C., Carroll L. et al. // Photon. Res. 2019. V. 7. No. 2. P. 201.
  6. Cheng L., Mao S., Li Z. et al. // Micromachines. 2020. V. 11. P. 666.
  7. Camposeo A., Persano L., Farsari M. et al. // Adv. Opt. Mater. 2019. V. 7. No. 1. Art. No.1800419.
  8. Matital R.P., Kolymagin D.A., Pisarenko A.V. et al. // Phys. Wave Phenom. 2023. V. 31. No. 4. P. 217.
  9. Деменев А.А., Ковальчук А.В., Полушкин Е.А., Шаповал С.Ю. // Изв. РАН. Сер. физ. 2021. Т. 85. № 2. С. 212, Demenev A.A., Kovalchuk A.V., Polushkin E.A., Shapoval S.Yu. // Bull. Russ. Acad. Sci. Phys. 2021. V. 85. No. 2. P. 159.
  10. Gehring H., Eich A., Schuck C., Pernice W.H. // Opt. Letters. 2019. V. 44. No. 20. P. 5089.
  11. Витухновский А.Г., Звагельский Р.Д., Колымагин Д.А. и др. // Изв. РАН. Сер. физ. 2020. Т. 84. № 7. С. 927, Vitukhnovsky A.G., Zvagelsky R.D., Kolymagin D.A. et al. //. Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 7. P. 760.
  12. Колымагин Д.А., Чубич Д.А., Щербаков Д.А. и др. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1695, Kolymagin D.A., Chubich D.A., Shcherbakov D.A. et al. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1779.
  13. Matital R.P., Kolymagin D.A., Chubich D.A. et al. // J. Sci. Adv. Mater. Dev. 2022. V. 7. No. 2. Art. No. 100413.
  14. Schmid M., Ludescher D., Giessen H. // Opt. Mater. Express. 2019. V. 9. No. 12. P. 4564.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of the experimental setup for measuring the transmission spectrum. Blue shows the path of optical fibers, gray, electrical, black, remote control of the laser.

Download (351KB)
3. Fig. 2. 3D connector model prepared in DeScribe software.

Download (421KB)
4. Fig. 3. Images of chip fragments for studying the efficiency of input of optical connectors, obtained using optical microscopy methods. Images of diffraction convectors and inputs for 3D microstructures before DLW photolithography (a). Images of outputs for 3D connectors before and after direct (3+1) D laser writing (b).

Download (453KB)
5. Fig. 4. Confocal microscope image of the created 3D structures.

Download (400KB)
6. Fig. 5. Connector transmission graphs. Gray curve is the transmission of a waveguide with a grating. Black curve is the transmission of a waveguide with two 3D connectors for input/output of radiation.

Download (236KB)

Copyright (c) 2024 Russian Academy of Sciences