Thickness dependencies of the coercivity of three-layer magnetic films obtained by chemical deposition
- Autores: Chzhan A.V1,2, Orlov V.A2,3, Moroz Z.M4
-
Afiliações:
- Krasnoyarsk State Agrarian University
- Siberian Federal University
- L.V. Kirensky Institute of Physics of the Siberian Branch of the Russian Academy of Sciences, Federal Research Center Krasnoyarsk Scientific Center of the Russian Academy of Sciences
- Irkutsk State Transport University, Krasnoyarsk Institute of Railway Transport
- Edição: Volume 89, Nº 4 (2025)
- Páginas: 528-532
- Seção: Magnetism and Magnetic Materials
- URL: https://modernonco.orscience.ru/0367-6765/article/view/690804
- DOI: https://doi.org/10.31857/S0367676525040048
- EDN: https://elibrary.ru/GSXKPG
- ID: 690804
Citar
Texto integral
Resumo
The results of the study of the coercivity of three-layer magnetic films obtained by chemical deposition are presented. The features of its changes from the thickness of the forming layers are determined. They are associated with the specificity of the magnetization reversal of the studied system, caused by a small difference in the values of the coercivity of the magnetic layers. The energy of the demagnetizing field is calculated, since an expression for the critical field for the magnetization reversal of the film is obtained, which describes well the experimentally observed linear dependence of the coercivity on the thickness of the magnetic layers.
Palavras-chave
Sobre autores
A. Chzhan
Krasnoyarsk State Agrarian University; Siberian Federal University
Email: avchr@mail.ru
Krasnoyarsk, Russia; Krasnoyarsk, Russia
V. Orlov
Siberian Federal University; L.V. Kirensky Institute of Physics of the Siberian Branch of the Russian Academy of Sciences, Federal Research Center Krasnoyarsk Scientific Center of the Russian Academy of SciencesKrasnoyarsk, Russia; Krasnoyarsk, Russia
Zh. Moroz
Irkutsk State Transport University, Krasnoyarsk Institute of Railway TransportKrasnoyarsk, Russia
Bibliografia
- Clow H. // Nature. 1962. V. 194. P. 1035.
- Herd S.R., Ahn K.Y. // J. Appl. Phys. 1979. V. 50. P. 2384.
- Friedlender F.J., Silva L.F. // J. Appl. Phys. 1965. V. 36. No. 3. P. 946.
- Kools J.C.S., Kula W., Mauri D., Lin T. // J. Appl. Phys. 1999. V 85. P. 4466.
- Gayen A., Umadevi K., Chelvane A. et al. // J. Mater. Sci. Eng. 2018. V. 7. P.1.
- Чжан А.В., Подорожняк С.А., Громилов С.А. и др. // Изв. РАН. Сер. физ. 2022. Т. 86. № 5. С. 730; Chzhan A.V., Podorozhnyak S.A., Gromilov S.A. et al. // Bull. Russ. Acad. Sci. Phys. 2022. V. 86. No. 5. P. 614.
- Chzhan A.V., Podorozhnyak S.A., Shahov A.N. et al. // J. Phys. Conf. Ser. 2019. V. 1389. P. 1.
- Бабичевский В.О., Гаврил Н.А., Леподовский и др. // ФММ. 1995. Т. 79. № 3. С. 70.
- Чжан А.В., Орлов В.А., Волочаев М.Н. // ФММ. 2023. Т. 124. № 10. С. 904; Chzhan A.V., Orlov V.A., Volochaev M.N. // Phys. Metals Metallog. 2023. V. 124. No. 10. P. 961.
- Kittel Ch. // Rev. Modern Phys. 1949. V. 21. No. 4. P. 541.
Arquivos suplementares
