Analysis of the possibility of increasing the degree of randomness of noise using a continuous wavelet transform on the example of a sequence of numbers generated by an optical random noise generator

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

The possibilities of controlling the parameters of random number sequences using a continuous wavelet transform are investigated. It is shown that changing the energy of the scales of the continuous wavelet transform can increase the percentage of passing the NIST LongestRun, FFT and Runs tests. The possibility of increasing the percentage of passing tests has been demonstrated for various sizes of the experimental sequence of random numbers under study.

Texto integral

Acesso é fechado

Sobre autores

M. Sibgatullin

Kazan National Research Technical University; Tatarstan Academy of Sciences

Autor responsável pela correspondência
Email: sibmans@mail.ru

Kazan Quantum Centre

Rússia, Kazan; Kazan

D. Mavkov

Kazan National Research Technical University

Email: sibmans@mail.ru

Kazan Quantum Centre

Rússia, Kazan

L. Gilyazov

Kazan National Research Technical University

Email: sibmans@mail.ru

Kazan Quantum Centre

Rússia, Kazan

N. Arslanov

Kazan National Research Technical University

Email: sibmans@mail.ru

Kazan Quantum Centre

Rússia, Kazan

Bibliografia

  1. Herrero-Collantes M., Garcia-Escartin J.C. // Rev. Modern Phys. 2017. V. 89. No. 1. Art. No. 015004.
  2. Mannalatha V., Mishra S., Pathak A. // Quantum Inf. Process. 2023. V. 22. Art. No. 439.
  3. Kim T., Lee S., Yun S. et al. // Proc. 23rd Int. Conf. WISA 2022 (Jeju Island, 2022). P. 277.
  4. Petrie C.S., Connelly J.A. // IEEE TCAS-I. 2000. V. 47. No. 5. P. 615.
  5. Katsoprinakis G., Polis M., Tavernarakis A. et al. // Phys. Rev. A. 2008. V. 77. Art. No. 054101.
  6. Argillander J., Alarcón A., Xavier G. // J. Optics. 2022. V. 24. Art. No. 064010.
  7. Khanmohammadi A., Enne R., Hofbauer M. et al. // IEEE Photonics J. 2015. V. 7. No. 5. P. 1.
  8. Grosshans F., Van Assche G., Wenger J. et al. // Nature. 2003. V. 421. P. 238.
  9. Symul T., Assad S.M., Lam P.K. // Appl. Phys. Lett. 2011. V. 98. Art. No. 231103.
  10. Балыгин К.А., Кулик С.П., Молотков С.Н. // Письма в ЖЭТФ. 2024. Т. 119. № 7. С. 533, Balygin K.A., Kulik S.P., Molotkov S.N. // JETP Lett. 2024. V. 119. No. 7. P. 538.
  11. Bikos A., Nastou P., Petroudis G., Stamatiou Y. // Criptography. 2023. V. 7. No. 4. P. 54.
  12. Сибгатуллин М.Э., Гилязов Л.Р., Мавков Д.А., Арсланов Н.М. // Изв. РАН. Сер. физ. 2023. Т. 87. № 12. С. 1796, Sibgatullin M.E., Gilyazov L.R., Mavkov D.A., Arslanov N.M. // Bull. Russ. Acad. Sci. Phys. 2023. V. 87. No. 12. P. 1869.
  13. Strydom C., Soleymani S., Özdemir Ş.K., Tame M.S. // New J. Phys. 2024. No. 26. Art. No. 043002.
  14. Евстифеев Е.В., Москаленко О.И. // Изв. РАН. Сер. физ. 2020. Т. 84. № 2. С. 300, Evstifeev E.V., Moskalenko O.I .// Bull. Russ. Acad. Sci. Phys. 2020. V. 84. No. 2. P. 230.
  15. Захаров В.М., Шалагин С.В., Гумиров А.И. // Вест. Дагестан. гос. ун-та. Сер. 1. Естеств. науки. 2023. Т. 38. № 3. С. 28.
  16. Obadi A.B., Zeghid M., Kan P.L.E. // EEE Access. 2022. V. 10. P. 126767.

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML
2. Fig. 1. Dependence of the percentage of sequences that successfully passed the NIST test on the number of scales of the continuous wavelet transform for which energy equalization was performed: FFT test, mean equalization (a), FFT test, minimum equalization (b), LongestRun test, mean equalization (c), LongestRun test, minimum equalization (d), Runs test, mean equalization (e), Runs test, minimum equalization (e).

Baixar (438KB)

Declaração de direitos autorais © Russian Academy of Sciences, 2024