4-Methylumbelliferone, an hyaluronan synthase inhibitor, prevents the development of oncological, inflammatory, degenerative and autoimmune disorders
- Authors: Fedorova V.V.1, Tsitrina A.2, Halimani N.1, Kotelevtsev Y.V.1
-
Affiliations:
- Skolkovo Institute of Science and Technology
- Ben-Gurion University of the Negev
- Issue: Vol 90, No 1 (2025)
- Pages: 3-21
- Section: Articles
- URL: https://modernonco.orscience.ru/0320-9725/article/view/682174
- DOI: https://doi.org/10.31857/S0320972525010017
- EDN: https://elibrary.ru/CREXLL
- ID: 682174
Cite item
Abstract
In present review we consider numerous experiments on tissue cultures, animal models of diseases and the first clinical studies providing the prospects of creating new drugs based on 4-MU. We believe that along with many receptors and transcription factors, the main pharmacological target of 4-MU is the hyaluronan synthase, which produces the main component of the extracellular matrix, glycosaminoglycan, hyaluronic acid (HA). The pharmacological effects of 4-MU in oncological, autoimmune, degenerative and hypercompensated regenerative processes (fibrosis, scarring) are associated with inhibition of HA synthesis. Clinical drugs based on 4-MU will be the first in the class for the treatment of a wide range of diseases.
Full Text

About the authors
V. V. Fedorova
Skolkovo Institute of Science and Technology
Email: y.kotelevtsev@skoltech.ru
Russian Federation, 121205 Moscow
A. Tsitrina
Ben-Gurion University of the Negev
Email: y.kotelevtsev@skoltech.ru
Israel, 8410501 Be’er Sheva
N. Halimani
Skolkovo Institute of Science and Technology
Email: y.kotelevtsev@skoltech.ru
Russian Federation, 121205 Moscow
Y. V. Kotelevtsev
Skolkovo Institute of Science and Technology
Author for correspondence.
Email: y.kotelevtsev@skoltech.ru
Russian Federation, 121205 Moscow
References
- Vitale, D. L., Icardi, A., Rosales, P., Spinelli, F. M., Sevic, I., and Alaniz, L. D. (2021) Targeting the tumor extracellular matrix by the natural molecule 4-methylumbelliferone: a complementary and alternative cancer therapeutic strategy, Front. Oncol., 11, 710061, https://doi.org/10.3389/fonc.2021.710061.
- Rosales, P., Vitale, D., Icardi, A., Sevic, I., and Alaniz, L. (2024) Role of Hyaluronic acid and its chemical derivatives in immunity during homeostasis, cancer and tissue regeneration, Semin. Immunopathol., 46, 15, https://doi.org/10.1007/s00281-024-01024-7.
- Tavianatou, A. G., Caon, I, Franchi M., Piperigkou, Z., Galesso, D., and Karamanos, N. K. (2019) Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer, FEBS J., 286, 2883-2908, https://doi.org/10.1111/febs.14777.
- Jung, H. (2020) Hyaluronidase: an overview of its properties, applications, and side effects, Arch. Plast. Surg., 47, 297-300, https://doi.org/10.5999/aps.2020.00752.
- Kudo, D., Kon, A., Yoshihara, S., Kakizaki, I., Sasaki, M., Endo, M., and Takagaki, K. (2004) Effect of a hyaluronan synthase suppressor, 4-methylumbelliferone, on B16F-10 melanoma cell adhesion and locomotion, Biochem. Biophys. Res. Commun., 321, 783-787, https://doi.org/10.1016/j.bbrc.2004.07.041.
- Cheng, X. B., Kohi, S., Koga, A., Hirata, K., and Sato, N. (2016) Hyaluronan stimulates pancreatic cancer cell motility, Oncotarget, 7, 4829-4840, https://doi.org/10.18632/oncotarget.6617.
- Ricciardelli, C., Russell, D. L., Ween, M. P., Mayne, K., Suwiwat, S., Byers, S., Marshall, V. R., Tilley, W. D., and Horsfall, D. J. (2007) Formation of hyaluronan- and versican-rich pericellular matrix by prostate cancer cells promotes cell motility, J. Biol. Chem., 282, 10814-10825, https://doi.org/10.1074/jbc. M606991200.
- Jacobetz, M. A., Chan, D. S., Neesse, A., Bapiro, T. E., Cook, N., Frese, K. K., Feig, C., Nakagawa, T., Caldwell, M. E., Zecchini, H. I., Lolkema, M. P., Jiang, P., Kultti, A., Thompson, C. B., Maneval, D. C., Jodrell, D. I., Frost, G. I., Shepard, H. M., Skepper, J. N., and Tuveson, D. A. (2013) Hyaluronan impairs vascular function and drug delivery in a mouse model of pancreatic cancer, Gut, 62, 112-120, https://doi.org/10.1136/gutjnl2012-302529.
- Misra, S., Ghatak, S., Zoltan-Jones, A., and Toole, B. P. (2003) Regulation of multidrug resistance in cancer cells by hyaluronan, J. Biol. Chem., 278, 25285-25288, https://doi.org/10.1074/jbc.C300173200.
- Toole, B. P., and Slomiany, M. G. (2008) Hyaluronan: a constitutive regulator of chemoresistance and malignancy in cancer cells, Semin. Cancer Biol., 18, 244-250, https://doi.org/10.1016/j.semcancer.2008.03.009.
- Vitale, D. L., Spinelli, F. M., Del Dago, D., Icardi, A., Demarchi, G., Caon, I., García, M., Bolontrade, M. F., Passi, A., Cristina, C., and Alaniz, L. (2018) Co-treatment of tumor cells with hyaluronan plus doxorubicin affects endothelial cell behavior independently of VEGF expression, Oncotarget, 9, 36585-36602, https://doi.org/10.18632/oncotarget.26379.
- Kultti, A., Zhao, C., Singha, NC., Zimmerman, S., Osgood, R. J., Symons, R., Jiang, P., Li X., Thompson, CB., Infante, J. R., Jacobetz, M. A., Tuveson, D. A., Frost, G. I., Shepard, H. M., and Huang, Z. (2014) Accumulation of extracellular hyaluronan by hyaluronan synthase 3 promotes tumor growth and modulates the pancreatic cancer microenvironment, Biomed. Res. Int., 2014, 817613, https://doi.org/10.1155/2014/817613.
- McBride, W. H., and Bard, J. B. (1979) Hyaluronidase-sensitive halos around adherent cells. Their role in blocking lymphocyte-mediated cytolysis, J. Exp. Med., 149, 507-515, https://doi.org/10.1084/jem.149.2.507.
- Lipponen, P., Aaltomaa, S., Tammi, R., Tammi, M., Agren, U., and Kosma, V. M. (2001) High stromal hyaluronan level is associated with poor differentiation and metastasis in prostate cancer, Eur. J. Cancer., 37, 849-856, https://doi.org/10.1016/s0959-8049(00)00448-2.
- Setälä, L. P., Tammi, M. I., Tammi, R. H., Eskelinen, M. J., Lipponen, P. K., Agren, U. M., Parkkinen, J., Alhava, E. M., and Kosma, V. M. (1999) Hyaluronan expression in gastric cancer cells is associated with local and nodal spread and reduced survival rate, Br. J. Cancer., 79, 1133-1138, https://doi.org/10.1038/sj.bjc.6690180.
- Anttila, M. A., Tammi, R. H., Tammi, MI., Syrjänen, K. J., Saarikoski, S. V., and Kosma, V. M. (2000) High levels of stromal hyaluronan predict poor disease outcome in epithelial ovarian cancer, Cancer Res., 60, 150-155.
- Bharadwaj, A. G., Kovar, J. L., Loughman, E., Elowsky, C., Oakley, G. G., and Simpson, M. A. (2009) Spontaneous metastasis of prostate cancer is promoted by excess hyaluronan synthesis and processing, Am. J. Pathol., 174, 1027-1036, https://doi.org/10.2353/ajpath.2009.080501.
- Sironen, R. K., Tammi, M., Tammi, R., Auvinen, P. K., Anttila, M., and Kosma, V. M. (2011) Hyaluronan in human malignancies, Exp. Cell Res., 317, 383-391, https://doi.org/10.1016/j.yexcr.2010.11.017.
- Kim, J., and Seki, E. (2023) Hyaluronan in liver fibrosis: basic mechanisms, clinical implications, and therapeutic targets, Hepatol. Commun., 7, e0083, https://doi.org/10.1097/HC9.0000000000000083.
- Yang, Y. M., Noureddin, M., Liu, C., Ohashi, K., Kim, S. Y., Ramnath, D., Powell, E. E., Sweet, M. J., Roh, Y. S., Hsin, I. F., Deng, N., Liu, Z., Liang, J., Mena, E., Shouhed, D., Schwabe, R. F., Jiang, D., Lu, S. C., Noble, P. W., and Seki, E. (2019) Hyaluronan synthase 2-mediated hyaluronan production mediates Notch1 activation and liver fibrosis, Sci. Transl. Med., 11, eaat9284, https://doi.org/10.1126/scitranslmed.aat9284.
- DeAngelis, P. L., and Zimmer, J. (2023) Hyaluronan synthases; mechanisms, myths, and mysteries of three types of unique bifunctional glycosyltransferases, Glycobiology, 33, 1117-1127, https://doi.org/10.1093/glycob/cwad075.
- Maloney, F. P., Kuklewicz, J., Corey, R. A., Bi, Y., Ho, R., Mateusiak, L., Pardon, E., Steyaert, J., Stansfeld, P. J., and Zimmer, J. (2022) Structure, substrate recognition and initiation of hyaluronan synthase, Nature, 604, 195-201, https://doi.org/10.1038/s41586-022-04534-2.
- Nakamura, T., Funahashi, M., Takagaki, K., Munakata, H., Tanaka, K., Saito, Y., and Endo, M. (1997) Effect of 4-methylumbelliferone on cell-free synthesis of hyaluronic acid, Biochem. Mol. Biol. Int., 43, 263-268, https://doi.org/10.1080/15216549700204041.
- Kakizaki, I., Kojima, K., Takagaki, K., Endo, M., Kannagi, R., Ito, M., Maruo, Y., Sato, H., Yasuda, T., Mita, S., Kimata, K., and Itano, N. (2004) A novel mechanism for the inhibition of hyaluronan biosynthesis by 4-methylumbelliferone, J. Biol. Chem., 279, 33281-33289, https://doi.org/10.1074/jbc.M405918200.
- Kultti, A., Pasonen-Seppänen, S., Jauhiainen, M., Rilla, KJ., Kärnä, R., Pyöriä, E., Tammi, R. H., and Tammi, M. I. (2009) 4-Methylumbelliferone inhibits hyaluronan synthesis by depletion of cellular UDP-glucuronic acid and downregulation of hyaluronan synthase 2 and 3, Exp. Cell Res., 315, 1914-1923, https://doi.org/10.1016/j.yexcr.2009.03.002.
- Nagy, N., Kuipers, H. F., Frymoyer, A. R., Ishak, H. D., Bollyky, J. B., Wight, T. N., and Bollyky, P. L. (2015) 4-methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer, Front. Immunol., 6, 123, https://doi.org/10.3389/fimmu.2015.00123.
- Tsitrina, A. A., Krasylov, I. V., Maltsev, D. I., Andreichenko, I. N., Moskvina, V. S., Ivankov, D. N., Bulgakova, E. V., Nesterchuk, M., Shashkovskaya, V., Dashenkova, N. O., Khilya, V. P., Mikaelyan, A., and Kotelevtsev, Y. (2021) Inhibition of hyaluronan secretion by novel coumarin compounds and chitin synthesis inhibitors, Glycobiology, 31, 959-974, https://doi.org/10.1093/glycob/cwab038.
- Saito, T., Dai, T., and Asano, R. (2013) The hyaluronan synthesis inhibitor 4-methylumbelliferone exhibits antitumor effects against mesenchymal-like canine mammary tumor cells, Oncol. Lett., 5, 1068-1074, https://doi.org/10.3892/ol.2013.1124.
- Sukowati, C. H. C., Anfuso, B., Fiore, E., Ie, S. I., Raseni, A., Vascotto, F., Avellini, C., Mazzolini, G., and Tiribelli, C. (2019) Hyaluronic acid inhibition by 4-methylumbelliferone reduces the expression of cancer stem cells markers during hepatocarcinogenesis, Sci. Rep., 9, 4026, https://doi.org/10.1038/s41598-019-40436-6.
- Andreichenko, I. N., Tsitrina, A. A., Fokin, A. V., Gabdulkhakova, A. I., Maltsev, D. I., Perelman, G. S., Bulgakova, E. V., Kulikov, A. M., Mikaelyan, A. S., and Kotelevtsev, Y. V. (2019) 4-methylumbelliferone prevents liver fibrosis by affecting hyaluronan deposition, FSTL1 expression and cell localization, Int. J. Mol. Sci., 20, 6301, https://doi.org/10.3390/ijms20246301.
- Vigetti, D., Rizzi, M., Viola, M., Karousou, E., Genasetti, A., Clerici, M., Bartolini, B., Hascall, V. C., De Luca, G., and Passi, A. (2009) The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells, Glycobiology, 19, 537-546, https://doi.org/10.1093/glycob/cwp022.
- Tsitrina, A. A., Halimani, N., Andreichenko, I. N., Sabirov, M., Nesterchuk, M., Dashenkova, N. O., Romanov, R., Bulgakova, E. V., Mikaelyan, A., and Kotelevtsev, Y. (2023) 4-methylumbelliferone targets revealed by public data analysis and liver transcriptome sequencing, Int. J. Mol. Sci., 24, 2129, https://doi.org/10.3390/ijms24032129.
- Díaz, M., Pibuel, M., Paglilla, N., Poodts, D., Álvarez, E., Papademetrio, D. L., Hajos, S. E., and Lompardía, S. L. (2021) 4-Methylumbelliferone induces antitumor effects independently of hyaluronan synthesis inhibition in human acute leukemia cell lines, Life Sci., 287, 120065, https://doi.org/10.1016/j.lfs.2021.120065.
- Zhang, W., Watson, C. E., Liu, C., Williams, K. J., and Werth, V. P. (2000) Glucocorticoids induce a near-total suppression of hyaluronan synthase mRNA in dermal fibroblasts and in osteoblasts: a molecular mechanism contributing to organ atrophy, Biochem. J., 349, 91-97, https://doi.org/10.1042/0264-6021:3490091.
- Saito, T., Tamura, D., Nakamura, T., Makita, Y., Ariyama, H., Komiyama, K., Yoshihara, T., and Asano, R. (2013) 4-methylumbelliferone leads to growth arrest and apoptosis in canine mammary tumor cells, Oncol. Rep., 29, 335-342, https://doi.org/10.3892/or.2012.2100.
- Ban, H., Uchakina, O., and McKallip, R. J. (2015) Hyaluronic acid inhibitor 4-methylumbelliferone activates the intrinsic apoptosis pathway in K562 chronic myelogenous leukemia cells, Anticancer Res., 35, 5231-5240.
- Halimani, N., Nesterchuk, M., Tsitrina, A. A., Sabirov, M., Andreichenko, I. N., Dashenkova, N. O., Petrova, E., Kulikov, A. M., Zatsepin, T. S., Romanov, R. A., Mikaelyan, A. S., and Kotelevtsev, Y. V. (2024) Knockdown of Hyaluronan synthase 2 suppresses liver fibrosis in mice via induction of transcriptomic changes similar to 4MU treatment, Sci. Rep., 14, 2797, https://doi.org/10.1038/s41598-024-53089-x.
- Kim, Y., and Kumar, S. (2014) CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility, Mol. Cancer Res., 12, 1416-1429, https://doi.org/10.1158/1541-7786.MCR-13-0629.
- Pibuel, M. A., Díaz, M., Molinari, Y., Poodts, D., Silvestroff, L., Lompardía, S. L., Franco, P., and Hajos, S. E. (2021) 4-Methylumbelliferone as a potent and selective antitumor drug on a glioblastoma model, Glycobiology, 31, 29-43, https://doi.org/10.1093/glycob/cwaa046.
- Pibuel, M. A., Poodts, D., Díaz, M., Molinari, Y. A., Franco, P. G., Hajos, S. E., and Lompardía, S. L. (2021) Antitumor effect of 4MU on glioblastoma cells is mediated by senescence induction and CD44, RHAMM and p-ERK modulation, Cell Death Discov., 7, 280, https://doi.org/10.1038/s41420-021-00672-0.
- Pibuel, M. A., Poodts, D., Sias, S. A., Byrne, A., Hajos, S. E., Franco, P. G., and Lompardía, S. L. (2023) 4-Methylumbelliferone enhances the effects of chemotherapy on both temozolomide-sensitive and resistant glioblastoma cells, Sci. Rep., 13, 9356, https://doi.org/10.1038/s41598-023-35045-3.
- Yan, T., Chen, X., Zhan, H., Yao, P., Wang, N., Yang, H., Zhang, C., Wang, K., Hu, H., Li, J., Sun, J., Dong, Y., Lu, E., Zheng, Z., Zhang, R., Wang, X., Ma, J., Gao, M., Ye, J., Wang, X., Teng, L., Liu, H., and Zhao, S. (2021) Interfering with hyaluronic acid metabolism suppresses glioma cell proliferation by regulating autophagy, Cell Death Dis., 12, 486, https://doi.org/10.1038/s41419-021-03747-z.
- Chistyakov, D. V., Nikolskaya, A. I., Goriainov, S. V., Astakhova, A. A., and Sergeeva, M. G. (2020) Inhibitor of hyaluronic acid synthesis 4-methylumbelliferone as an anti-inflammatory modulator of LPS-mediated astrocyte responses, Int. J. Mol. Sci., 21, 8203, https://doi.org/10.3390/ijms21218203.
- Dubisova, J., Burianova, J. S., Svobodova, L., Makovicky, P., Martinez-Varea, N., Cimpean, A., Fawcett, J. W., Kwok, J. C. F., and Kubinova, S. (2022) Oral treatment of 4-methylumbelliferone reduced perineuronal nets and improved recognition memory in mice, Brain Res. Bull., 181, 144-156, https://doi.org/10.1016/j.brainresbull.2022.01.011.
- McKallip, R. J., Hagele, H. F., and Uchakina, O. N. (2013) Treatment with the hyaluronic acid synthesis inhibitor 4-methylumbelliferone suppresses SEB-induced lung inflammation, Toxins (Basel), 5, 1814-1826, https:// doi.org/10.3390/toxins5101814.
- McKallip, R. J., Ban, H., and Uchakina, O. N. (2015) Treatment with the hyaluronic Acid synthesis inhibitor 4-methylumbelliferone suppresses LPS-induced lung inflammation, Inflammation, 38, 1250-1259, https://doi.org/10.1007/s10753-014-0092-y.
- Wang, H. N., Xiang, Q. A., Lin, H. H., Chen, J. N., Guo, W. J., Guo, W. M., Yue, X. N., Zhao, Z. F., Ji K., and Chen, J. J. (2022) Plant-derived molecule 4-methylumbelliferone suppresses FcεRI-mediated mast cell activation and allergic inflammation, Molecules, 27, 1577, https://doi.org/10.3390/molecules27051577.
- Lee, S. N., Yoon, S. A., Song, J. M., Kim, H. C., Cho, H. J., Choi, A. M. K., and Yoon, J. H. (2022) Cell-type-specific expression of hyaluronan synthases HAS2 and HAS3 promotes goblet cell hyperplasia in allergic airway inflammation, Am. J. Respir. Cell Mol. Biol., 67, 360-374, https://doi.org/10.1165/rcmb.2021-0527OC.
- Galkina, S. I., Fedorova, N. V., Ksenofontov, A. L., Golenkina, E. A., Serebryakova, M. V., Stadnichuk, V. I., Baratova, L. A., and Sud’ina, G. F. (2022) Inhibitor of hyaluronic acid synthesis 4-methylumbelliferone suppresses the secretory processes that ensure the invasion of neutrophils into tissues and induce inflammation, Biomedicines, 10, 314, https://doi.org/10.3390/biomedicines10020314.
- Hasegawa, K., Saga, R., Ohuchi, K., Kuwahara, Y., Tomita, K., Okumura, K., Sato, T., Fukumoto, M., Tsuruga, E., and Hosokawa, Y. (2022) 4-Methylumebelliferone enhances radiosensitizing effects of radioresistant oral squamous cell carcinoma cells via hyaluronan synthase 3 suppression, Cells, 11, 3780, https://doi.org/10.3390/cells11233780.
- Quaranta, S., Rossetti, S., and Camarri, E. (1984) Double-blind clinical study on hymecromone and placebo in motor disorders of the bile ducts after cholecystectomy, Clin. Ter., 108, 513-517.
- Krawzak, H. W., Heistermann, H. P., Andrejewski, K., and Hohlbach, G. (1995) Postprandial bile-duct kinetics under the influence of 4-methylumbelliferone (hymecromone), Int. J. Clin. Pharmacol. Ther., 33, 569-572.
- Yoon, Y., Chae, M. K., Lee, E. J., and Yoon, J. S. (2020) 4-Methylumbelliferone suppresses hyaluronan and adipogenesis in primary cultured orbital fibroblasts from Graves’ orbitopathy, Graefes Arch. Clin. Exp. Ophthalmol., 258, 1095-1102, https://doi.org/10.1007/s00417-019-04528-3.
- Marshall, P. L., Nagy, N., Kaber, G., Barlow, G. L., Ramesh, A., Xie, B. J., Linde, M. H., Haddock, N. L., Lester, C. A., Tran, Q. L., de Vries, C. R., Hargil, A., Malkovskiy, A. V., Gurevich, I., Martinez, H. A., Kuipers, H. F., Yadava, K., Zhang, X., Evanko, S. P., Gebe, J. A., Wang, X., Vernon, R. B., de la Motte, C., Wight, T. N., Engleman, E. G., Krams, S. M., Meyer, E. H., and Bollyky, P. L. (2021) Hyaluronan synthesis inhibition impairs antigen presentation and delays transplantation rejection, Matrix Biol., 96, 69-86, https://doi.org/10.1016/j.matbio.2020.12.001.
- Gebe, J. A., Gooden, M. D., Workman, G., Nagy, N., Bollyky, P. L., Wight, T. N., and Vernon, R. B. (2020) Modulation of hyaluronan synthases and involvement of T cell-derived hyaluronan in autoimmune responses to transplanted islets, Matrix Biol. Plus, 9, 100052, https://doi.org/10.1016/j.mbplus.2020.100052.
- Imani, J., Liu, K., Cui, Y., Assaker, J. P., Han, J., Ghosh, A. J., Ng, J., Shrestha, S., Lamattina, A. M., Louis, P. H., Hentschel, A., Esposito, A. J., Rosas, I. O., Liu, X., Perrella, M. A., Azzi, J., Visner, G., and El-Chemaly, S. (2021) Blocking hyaluronan synthesis alleviates acute lung allograft rejection, JCI Insight., 6, e142217, https://doi.org/10.1172/jci.insight.142217.
- Uchakina, O. N., Ban, H., and McKallip, R. J. (2013) Targeting hyaluronic acid production for the treatment of leukemia: treatment with 4-methylumbelliferone leads to induction of MAPK-mediated apoptosis in K562 leukemia, Leuk. Res., 37, 1294-1301, https://doi.org/10.1016/j.leukres.2013.07.009.
- Uchakina, O. N., Ban, H., Hostetler, B. J., and McKallip, R. J. (2016) Inhibition of hyaluronic acid formation sensitizes chronic myelogenous leukemia to treatment with doxorubicin, Glycobiology, 26, 1171-1179, https://doi.org/10.1093/glycob/cww064.
- Lompardía, S. L., Díaz, M., Papademetrio, D. L., Pibuel, M., Álvarez, É., and Hajos, S. E. (2017) 4-methylumbelliferone and imatinib combination enhances senescence induction in chronic myeloid leukemia cell lines, Invest. New Drugs, 35, 1-10, https://doi.org/10.1007/s10637-016-0397-9.
- Cho, H., Matsumoto, S., Fujita, Y., Kuroda, A., Menju, T., Sonobe, M., Kondo, N., Torii, I., Nakano, T., Lara, P. N., Gandara, D. R., Date, H., and Hasegawa, S. (2017) Trametinib plus 4-methylumbelliferone exhibits antitumor effects by ERK blockade and CD44 downregulation and affects PD-1 and PD-L1 in malignant pleural mesothelioma, J. Thorac. Oncol., 12, 477-490, https://doi.org/10.1016/j.jtho.2016.10.023.
- Collum, S. D., Chen, N. Y., Hernandez, A. M., Hanmandlu, A., Sweeney, H., Mertens, T. C. J., Weng, T., Luo, F., Molina, J. G., Davies, J., Horan, I. P., Morrell, N. W., Amione-Guerra, J., Al-Jabbari, O., Youker, K., Sun, W., Rajadas, J., Bollyky, P. L., Akkanti, B. H., Jyothula, S., Sinha, N., Guha, A., and Karmouty-Quintana, H. (2017) Inhibition of hyaluronan synthesis attenuates pulmonary hypertension associated with lung fibrosis, Br. J. Pharmacol., 174, 3284-3301, https://doi.org/10.1111/bph.13947.
- Karalis, T. T., Heldin, P., Vynios, D. H., Neill, T., Buraschi, S., Iozzo, R. V., Karamanos, N. K., and Skandalis, S. S. (2019) Tumor-suppressive functions of 4-MU on breast cancer cells of different ER status: regulation of hyaluronan/HAS2/CD44 and specific matrix effectors, Matrix Biol., 78-79, 118-138, https://doi.org/10.1016/j.matbio.2018.04.007.
- Choi, B. H., Ryoo, I., Sim, K. H., Ahn, H. J., Lee, Y. J., and Kwak, M. K. (2022) High levels of hyaluronic acid synthase-2 mediate NRF2-driven chemoresistance in breast cancer cells, Biomol. Ther. (Seoul), 30, 368-379, https://doi.org/10.4062/biomolther.2022.074.
- Morera, D. S., Hennig, M. S., Talukder, A., Lokeshwar, S. D., Wang, J., Garcia-Roig, M., Ortiz, N., Yates, T. J., Lopez, L. E., Kallifatidis, G., Kramer, M. W., Jordan, A. R., Merseburger, A. S., Manoharan, M., Soloway, M. S., Terris, M. K., and Lokeshwar, V. B. (2017) Hyaluronic acid family in bladder cancer: potential prognostic biomarkers and therapeutic targets, Br. J. Cancer, 117, 1507-1517, https://doi.org/10.1038/bjc.2017.318.
- Ikuta, K., Ota, T., Zhuo, L., Urakawa, H., Kozawa, E., Hamada, S., Kimata, K., Ishiguro, N., and Nishida, Y. (2017) Antitumor effects of 4-methylumbelliferone, a hyaluronan synthesis inhibitor, on malignant peripheral nerve sheath tumor, Int. J. Cancer, 140, 469-479, https://doi.org/10.1002/ijc.30460.
- Piccioni, F., Malvicini, M., Garcia, MG., Rodriguez, A., Atorrasagasti, C., Kippes, N., Piedra Buena, I. T., Rizzo, M. M., Bayo, J., Aquino, J., Viola, M., Passi, A., Alaniz, L., and Mazzolini, G. (2012) Antitumor effects of hyaluronic acid inhibitor 4-methylumbelliferone in an orthotopic hepatocellular carcinoma model in mice, Glycobiology, 22, 400-410, https://doi.org/10.1093/glycob/cwr158.
- Piccioni, F., Fiore, E., Bayo, J., Atorrasagasti, C., Peixoto, E., Rizzo, M., Malvicini, M., Tirado-González, I., García, M. G., Alaniz, L., and Mazzolini, G. (2015) 4-methylumbelliferone inhibits hepatocellular carcinoma growth by decreasing IL-6 production and angiogenesis, Glycobiology, 25, 825-835, https://doi.org/10.1093/glycob/cwv023.
- Rodríguez, M. M., Onorato, A., Cantero, M. J., Domínguez, L., Bayo, J., Fiore, E., García, M., Atorrasagasti, C., Canbay, A., Malvicini, M., and Mazzolini, G. D. (2021) 4-methylumbelliferone-mediated polarization of M1 macrophages correlate with decreased hepatocellular carcinoma aggressiveness in mice, Sci. Rep., 11, 6310, https://doi.org/10.1038/s41598-021-85491-0.
- Weiz, G., Molejon, MI., Malvicini, M., Sukowati, C. H. C., Tiribelli, C., Mazzolini, G., and Breccia, J. D. (2022) Glycosylated 4-methylumbelliferone as a targeted therapy for hepatocellular carcinoma, Liver Int., 42, 444-457, https://doi.org/10.1111/liv.15084.
- Yoshihara, S., Kon, A., Kudo, D., Nakazawa, H., Kakizaki, I., Sasaki, M., Endo, M., and Takagaki, K. (2005) A hyaluronan synthase suppressor, 4-methylumbelliferone, inhibits liver metastasis of melanoma cells, FEBS Lett., 579, 2722-2726, https://doi.org/10.1016/j.febslet.2005.03.079.
- Yang, Y. M., Wang, Z., Matsuda, M., and Seki, E. (2021) Inhibition of hyaluronan synthesis by 4-methylumbelliferone ameliorates non-alcoholic steatohepatitis in choline-deficient L-amino acid-defined diet-induced murine model, Arch. Pharm. Res., 44, 230-240, https://doi.org/10.1007/s12272-021-01309-7.
- Nakazawa, H., Yoshihara, S., Kudo, D., Morohashi, H., Kakizaki, I., Kon, A., Takagaki, K., and Sasaki, M. (2006) 4-methylumbelliferone, a hyaluronan synthase suppressor, enhances the anticancer activity of gemcitabine in human pancreatic cancer cells, Cancer Chemother. Pharmacol., 57, 165-170, https://doi.org/10.1007/s00280-005-0016-5.
- Yoshida, E., Kudo, D., Nagase, H., Shimoda, H., Suto, S., Negishi, M., Kakizaki, I., Endo, M., and Hakamada, K. (2016) Antitumor effects of the hyaluronan inhibitor 4-methylumbelliferone on pancreatic cancer, Oncol. Lett., 12, 2337-2344, https://doi.org/10.3892/ol.2016.4930.
- Nagase, H., Kudo, D., Suto, A., Yoshida, E., Suto, S., Negishi, M., Kakizaki, I., and Hakamada, K. (2017) 4-methylumbelliferone suppresses hyaluronan synthesis and tumor progression in SCID mice intra-abdominally inoculated with pancreatic cancer cells, Pancreas, 46, 190-197, https://doi.org/10.1097/MPA.0000000000000741.
- Cheng, X. B., Sato, N., Kohi, S., Koga, A., and Hirata, K. (2018) 4-Methylumbelliferone inhibits enhanced hyaluronan synthesis and cell migration in pancreatic cancer cells in response to tumor-stromal interactions, Oncol. Lett., 15, 6297-6301, https://doi.org/10.3892/ol.2018.8147.
- Yoshida, E., Kudo, D., Nagase, H., Suto, A., Shimoda, H., Suto, S., Kakizaki, I., Endo, M., and Hakamada, K. (2018) 4-methylumbelliferone decreases the hyaluronan-rich extracellular matrix and increases the effectiveness of 5-fluorouracil, Anticancer Res., 38, 5799-5804, https://doi.org/10.21873/anticanres.12919.
- Kudo, Y., Kohi, S., Hirata, K., Goggins, M., and Sato, N. (2019) Hyaluronan activated-metabolism phenotype (HAMP) in pancreatic ductal adenocarcinoma, Oncotarget, 10, 5592-5604, https://doi.org/10.18632/oncotarget.27172.
- Suto, A., Kudo, D., Yoshida. E., Nagase, H., Suto, S., Mimura, J., Itoh, K., and Hakamada, K. (2019) Increase of tumor infiltrating γδ T-cells in pancreatic ductal adenocarcinoma through remodeling of the extracellular matrix by a hyaluronan synthesis suppressor, 4-methylumbelliferone, Pancreas, 48, 292-298, https://doi.org/10.1097/MPA.0000000000001211.
- Benitez, A., Yates, T. J., Shamaldevi, N., Bowen, T., Lokeshwar, V. B. (2013) Dietary supplement hymecromone and sorafenib: a novel combination for the control of renal cell carcinoma, J. Urol., 190, 285-290, https://doi.org/10.1016/j.juro.2012.12.011.
- Colombaro, V., Declèves, A. E., Jadot, I., Voisin, V., Giordano, L., Habsch, I., Nonclercq, D., Flamion, B., and Caron, N. (2013) Inhibition of hyaluronan is protective against renal ischaemia-reperfusion injury, Nephrol. Dial. Transplant., 28, 2484-2493, https://doi.org/10.1093/ndt/gft314.
- Jordan, A. R., Wang, J., Yates, T. J., Hasanali, S. L., Lokeshwar, S. D., Morera, D. S., Shamaladevi, N., Li, C. S., Klaassen, Z., Terris, M. K., Thangaraju, M., Singh, A. B., Soloway, M. S., and Lokeshwar, V. B. (2020) Molecular targeting of renal cell carcinoma by an oral combination, Oncogenesis, 9, 52, https://doi.org/10.1038/s41389-020-0233-0.
- Selman, G., Martinez, L., Lightle, A., Aguilar, A., Woltmann, D., Xiao, Y., Vazquez-Padron, R. I., and Salman. L. H. (2021) A hyaluronan synthesis inhibitor delays the progression of diabetic kidney disease in a mouse experimental model, Kidney360, 2, 809-818, https://doi.org/10.34067/KID.0004642020.
- Wang, J., Jordan, A. R., Zhu, H., Hasanali, S. L., Thomas, E., Lokeshwar, S. D., Morera, D. S., Alexander, S., McDaniels, J., Sharma, A., Aguilar, K., Sarcan, S., Zhu, T., Soloway, M. S., Terris, M. K., Thangaraju, M., Lopez, L. E., and Lokeshwar, V. B. (2022) Targeting hyaluronic acid synthase-3 (HAS3) for the treatment of advanced renal cell carcinoma, Cancer Cell Int., 22, 421, https://doi.org/10.1186/s12935-022-02818-1.
- Lokeshwar, V. B., Lopez, L. E., Munoz, D., Chi, A., Shirodkar, S. P., Lokeshwar, S. D., Escudero, D. O., Dhir, N., and Altman, N. (2010) Antitumor activity of hyaluronic acid synthesis inhibitor 4-methylumbelliferone in prostate cancer cells, Cancer Res., 70, 2613-2623, https://doi.org/10.1158/0008-5472.CAN-09-3185.
- Yates, T. J., Lopez, L. E., Lokeshwar, S. D., Ortiz, N., Kallifatidis, G., Jordan, A., Hoye, K., Altman, N., and Lokeshwar, V. B. (2015) Dietary supplement 4-methylumbelliferone: an effective chemopreventive and therapeutic agent for prostate cancer, J. Natl. Cancer Inst., 107, djv085, https://doi.org/10.1093/jnci/djv085.
- Saga, R., Monzen, S., Chiba, M., Yoshino, H., Nakamura, T., and Hosokawa, Y. (2017) Anti-tumor and anti-invasion effects of a combination of 4-methylumbelliferone and ionizing radiation in human fibrosarcoma cells, Oncol. Lett., 13, 410-416, https://doi.org/10.3892/ol.2016.5385.
- Saga, R., Hasegawa, K., Murata, K., Chiba, M., Nakamura, T., Okumura, K., Tsuruga, E., and Hosokawa, Y. (2019) Regulation of radiosensitivity by 4-methylumbelliferone via the suppression of interleukin-1 in fibrosarcoma cells, Oncol. Lett., 17, 3555-3561, https://doi.org/10.3892/ol.2019.9990.
- Hasegawa, K., Saga, R., Takahashi, R., Fukui, R., Chiba, M., Okumura, K., Tsuruga, E., and Hosokawa, Y. (2020) 4-methylumbelliferone inhibits clonogenic potency by suppressing high molecular weight-hyaluronan in fibrosarcoma cells, Oncol. Lett., 19, 2801-2808, https://doi.org/10.3892/ol.2020.11370.
- Saga, R., Matsuya, Y., Takahashi, R., Hasegawa, K., Date, H., and Hosokawa, Y. (2021) 4-Methylumbelliferone administration enhances radiosensitivity of human fibrosarcoma by intercellular communication, Sci. Rep., 11, 8258, https://doi.org/10.1038/s41598-021-87850-3.
- Malvicini, M., Fiore, E., Ghiaccio, V., Piccioni, F., Rizzo, M., Olmedo, Bonadeo L., García, M., Rodríguez, M., Bayo, J., Peixoto, E., Atorrasagasti, C., Alaniz, L., Aquino, J., Matar, P., and Mazzolini, G. (2015) Tumor microenvironment remodeling by 4-methylumbelliferone boosts the antitumor effect of combined immunotherapy in murine colorectal carcinoma, Mol. Ther., 23, 1444-1455, https://doi.org/10.1038/mt.2015.112.
- Zhan, D., Yalcin, F., Ma, D., Fu, Y., Wei, S., Lal, B., Li, Y., Dzaye, O., Laterra, J., Ying, M., Lopez-Bertoni, H., and Xia, S. (2021) Targeting UDP-α-d-glucose 6-dehydrogenase alters the CNS tumor immune microenvironment and inhibits glioblastoma growth, Genes Dis., 9, 717-730, https://doi.org/10.1016/j.gendis.2021.08.008.
- Olivares, C. N., Alaniz, L. D., Menger, M. D., Barañao, R. I., Laschke, M. W., and Meresman, G. F. (2016) Inhibition of hyaluronic acid synthesis suppresses angiogenesis in developing endometriotic lesions, PLoS One, 11, e0152302, https://doi.org/10.1371/journal.pone.0152302.
- McLaughlin, J. E., Santos, M. T., Binkley, P. A., Sultana, M., Tekmal, R. R., Schenken, R. S., and Knudtson, J. F. (2020) Inhibition of hyaluronic acid synthesis decreases endometrial cell attachment, migration, and invasion, Reprod. Sci., 27, 1058-1063, https://doi.org/10.1007/s43032-019-00100-w.
- Olivares, C. N., Ricci, A. G., Bilotas, M. A., Alaniz, L., Barañao, R. I., and Meresman, G. F. (2023) Effects of pharmacological inhibition of hyaluronic acid synthesis on experimental endometriosis, Eur. J. Clin. Invest., 53, e13899, https://doi.org/10.1111/eci.13899.
- Tamura, R., Yokoyama, Y., Yoshida, H., Imaizumi, T., and Mizunuma, H. (2014) 4-Methylumbelliferone inhibits ovarian cancer growth by suppressing thymidine phosphorylase expression, J. Ovarian Res., 7, 94, https://doi.org/10.1186/s13048-014-0094-2.
- Lokman, N. A., Price, Z. K., Hawkins, E. K., Macpherson, A. M., Oehler, M. K., and Ricciardelli, C. (2019) 4-Methylumbelliferone inhibits cancer stem cell activation and overcomes chemoresistance in ovarian cancer, Cancers (Basel), 11, 1187, https://doi.org/10.3390/cancers11081187.
- An, G., Park, S., Lee, M., Lim, W., and Song, G. (2020) Antiproliferative effect of 4-methylumbelliferone in epithelial ovarian cancer cells is mediated by disruption of intracellular homeostasis and regulation of PI3K/AKT and MAPK signaling, Pharmaceutics, 12, 640, https://doi.org/10.3390/pharmaceutics12070640.
- Spinelli, F. M., Vitale, D. L., Icardi, A., Caon, I., Brandone, A., Giannoni, P., Saturno, V., Passi, A., García, M., Sevic, I., and Alaniz, L. (2019) Hyaluronan preconditioning of monocytes/macrophages affects their angiogenic behavior and regulation of TSG-6 expression in a tumor type-specific manner, FEBS J., 286, 3433-3449, https://doi.org/10.1111/febs.14871.
- Höbarth, K., Maier, U., and Marberger, M. (1992) Topical chemoprophylaxis of superficial bladder cancer with mitomycin C and adjuvant hyaluronidase, Eur. Urol., 21, 206-210, https://doi.org/10.1159/000474839.
- Ruponen, M., Honkakoski, P., Tammi, M., and Urtti, A. (2004) Cell-surface glycosaminoglycans inhibit cation-mediated gene transfer, J. Gene Med., 6, 405-414, https://doi.org/10.1002/jgm.522.
- Miyamoto, H., Murakami, T., Tsuchida, K., Sugino, H., Miyake, H., and Tashiro, S. (2004) Tumor-stroma interaction of human pancreatic cancer: acquired resistance to anticancer drugs and proliferation regulation is dependent on extracellular matrix proteins, Pancreas, 28, 38-44, https://doi.org/10.1097/00006676-200401000-00006.
- Fang, H., and Declerck, Y. A. (2013) Targeting the tumor microenvironment: from understanding pathways to effective clinical trials, Cancer Res., 73, 4965-4977, https://doi.org/10.1158/0008-5472.CAN-13-0661.
- Heldin, C. H., Rubin, K., Pietras, K., and Ostman, A. (2004) High interstitial fluid pressure – an obstacle in cancer therapy, Nat. Rev. Cancer, 4, 806-813, https://doi.org/10.1038/nrc1456.
- Padera, T. P., Stoll, B. R., Tooredman, J. B., Capen, D., di Tomaso, E., and Jain, R. K. (2004) Pathology: cancer cells compress intratumour vessels, Nature, 427, 695, https://doi.org/10.1038/427695a.
- Toole, B. P. (2004) Hyaluronan: from extracellular glue to pericellular cue, Nat. Rev. Cancer, 4, 528-539, https://doi.org/10.1038/nrc1391.
- Friman, T., Gustafsson, R., Stuhr, LB., Chidiac, J., Heldin, N. E., Reed, R. K., Oldberg, A., and Rubin, K. (2012) Increased fibrosis and interstitial fluid pressure in two different types of syngeneic murine carcinoma grown in integrin β3-subunit deficient mice, PLoS One, 7, e34082, https://doi.org/10.1371/journal.pone.0034082.
- Singha, N. C., Nekoroski, T., Zhao, C., Symons, R., Jiang, P., Frost, G. I., Huang, Z., and Shepard, H. M. (2015) Tumor-associated hyaluronan limits efficacy of monoclonal antibody therapy, Mol. Cancer Ther., 14, 523-532, https://doi.org/10.1158/1535-7163.MCT-14-0580.
- Twarock, S., Reichert, C., Bach, K., Reiners, O., Kretschmer, I., Gorski, D. J., Gorges, K., Grandoch, M., and Fischer, J. W. (2019) Inhibition of the hyaluronan matrix enhances metabolic anticancer therapy by dichloroacetate in vitro and in vivo, Br. J. Pharmacol., 176, 4474-4490, https://doi.org/10.1111/bph.14808.
- Abildgaard, C., Rizza, S., Christiansen, H., Schmidt, S., Dahl, C., Abdul-Al, A., Christensen, A., Filomeni, G., and Guldberg, P. (2021) Screening of metabolic modulators identifies new strategies to target metabolic reprogramming in melanoma, Sci. Rep., 11, 4390, https://doi.org/10.1038/s41598-021-83796-8.
- Anand, V., Khandelwal, M., Appunni, S., Gupta, N., Seth, A., Singh, P., Mathur, S., and Sharma, A. (2019) CD44 splice variant (CD44v3) promotes progression of urothelial carcinoma of bladder through Akt/ERK/STAT3 pathways: novel therapeutic approach, J. Cancer Res. Clin. Oncol., 145, 2649-2661, https://doi.org/10.1007/s00432-019-03024-9.
- Rodríguez, M. M., Fiore, E., Bayo, J., Atorrasagasti, C., García, M., Onorato, A., Domínguez, L., Malvicini, M., and Mazzolini, G. (2018) 4Mu decreases CD47 expression on hepatic cancer stem cells and primes a potent antitumor T cell response induced by interleukin-12, Mol. Ther., 26, 2738-2750, https://doi.org/10.1016/j.ymthe.2018.09.012.
- Hountondji, L., Ferreira De Matos, C., Lebossé, F., Quantin, X., Lesage, C., Palassin, P., Rivet, V., Faure, S., Pageaux, G. P., Assenat, É., Alric, L., Zahhaf, A., Larrey, D., Witkowski Durand Viel, P., Riviere, B., Janick, S., Dalle, S., Maria, A. T. J., Comont, T., and Meunier, L. (2023) Clinical pattern of checkpoint inhibitor-induced liver injury in a multicentre cohort, JHEP Rep., 5, 100719, https://doi.org/10.1016/j.jhepr.2023.100719.
- Tawbi, H. A., Schadendorf, D., Lipson, E. J., Ascierto, P. A., Matamala, L., Castillo, Gutiérrez, E., Rutkowski, P., Gogas, H. J., Lao, C. D., De Menezes, J. J., Dalle, S., Arance, A., Grob, J .J., Srivastava, S., Abaskharoun, M., Hamilton, M., Keidel, S., Simonsen, K. L., Sobiesk, A. M., Li B., Hodi, F. S., and Long, G. V. (2022) Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma, N. Engl. J. Med., 386, 24-34, https://doi.org/10.1056/NEJMoa2109970.
- Malnick, S. D. H., Abdullah, A., and Neuman, M. G. (2021) Checkpoint Inhibitors and Hepatotoxicity, Biomedicines, 9, 101, https://doi.org/10.3390/biomedicines9020101.
- De Martin, E., Michot, JM., Rosmorduc, O., Guettier, C., and Samuel, D. (2020) Liver toxicity as a limiting factor to the increasing use of immune checkpoint inhibitors, JHEP Rep., 2, 100170, https://doi.org/10.1016/j.jhepr.2020.100170.
- Hernandez, N., and Bessone, F. (2022) Hepatotoxicity induced by biological agents: clinical features and current controversies, J. Clin. Transl. Hepatol., 10, 486-495, https://doi.org/10.14218/JCTH.2021.00243.
- Shah, P., Sundaram, V., and Björnsson, E. (2020) Biologic and checkpoint inhibitor-induced liver injury: a systematic literature review, Hepatol. Commun., 4, 172-184, https://doi.org/10.1002/hep4.1465.
- Peeraphatdit, T. B., Wang, J., Odenwald, M. A., Hu, S., Hart, J., and Charlton, M. R. (2020) Hepatotoxicity from immune checkpoint inhibitors: a systematic review and management recommendation, Hepatology, 72, 315-329, https://doi.org/10.1002/hep.31227.
- Delire, B., De Martin, E., Meunier, L., Larrey, D., and Horsmans, Y. (2022) Immunotherapy and gene therapy: new challenges in the diagnosis and management of drug-induced liver injury, Front. Pharmacol., 12, 786174, https://doi.org/10.3389/fphar.2021.786174.
- Haanen, J., Obeid, M., Spain, L., Carbonnel, F., Wang, Y., Robert, C., Lyon, A. R., Wick, W., Kostine, M., Peters, S., Jordan, K., and Larkin, J. (2022) Management of toxicities from immunotherapy: ESMO clinical practice guideline for diagnosis, treatment and follow-up, Ann. Oncol., 33, 1217-1238, https://doi.org/10.1016/j.annonc.2022.10.001.
- Puzanov, I., Diab, A., Abdallah, K., Bingham, C. O. 3rd., Brogdon, C., Dadu, R., Hamad, L., Kim, S., Lacouture, M. E., LeBoeuf, N. R., Lenihan, D., Onofrei, C., Shannon, V., Sharma, R., Silk, A. W., Skondra, D., Suarez-Almazor, M. E., Wang, Y., Wiley, K., Kaufman, H. L., and Ernstoff, M. S. (2017) Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the Society for Immunotherapy of Cancer (SITC) Toxicity Management Working Group, J. Immunother. Cancer, 5, 95, https://doi.org/10.1186/s40425-017-0300-z.
- Brahmer, J. R., Lacchetti, C., Schneider, B. J., Atkins, M. B., Brassil, K. J., Caterino, J. M., Chau, I., Ernstoff, M. S., Gardner, J. M., Ginex, P., Hallmeyer, S., Holter Chakrabarty, J., Leighl, N. B., Mammen, J. S., McDermott, D. F., Naing, A., Nastoupil, L. J., Phillips, T., Porter, L. D., Puzanov, I., Reichner, C. A., Santomasso, B. D., Seigel, C., Spira, A., Suarez-Almazor, M. E., Wang, Y., Weber, J. S., Wolchok, J. D., and Thompson, J. A. (2018) Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline, J. Clin. Oncol., 36, 1714-1768, https://doi.org/10.1200/JCO.2017.77.6385.
- Dougan, M., Wang, Y., Rubio-Tapia, A., and Lim, J. K. (2021) AGA Clinical practice update on diagnosis and management of immune checkpoint inhibitor colitis and hepatitis: expert review, Gastroenterology, 160, 1384-1393, https://doi.org/10.1053/j.gastro.2020.08.063.
- Doherty, G. J., Duckworth, A. M., Davies, S. E., Mells, G. F., Brais, R., Harden, S. V., Parkinson, C. A., and Corrie, P. G. (2017) Severe steroid-resistant anti-PD1 T-cell checkpoint inhibitor-induced hepatotoxicity driven by biliary injury, ESMO Open, 2, e000268, https://doi.org/10.1136/esmoopen-2017-000268.
- Onishi, S., Tajika, M., Bando, H., Matsubara, Y., Hosoda, W., Muro, K., and Niwa, Y. (2020) Ursodeoxycholic acid and bezafibrate were useful for steroid-refractory, immune-related hepatitis: a case report, J. Med. Case Rep., 14, 230, https://doi.org/10.1186/s13256-020-02541-3.
- Sato, K., Hayashi, M., Abe, K., Fujita, M., Takahashi, A., and Ohira, H. (2020) Pembrolizumab-induced sclerosing cholangitis in a lung adenocarcinoma patient with a remarkable response to chemotherapy: a case report, Clin. J. Gastroenterol., 13, 1310-1314, https://doi.org/10.1007/s12328-020-01178-5.
- Robles-Díaz, M., Nezic, L., Vujic-Aleksic, V., and Björnsson, E. S. (2021) Role of ursodeoxycholic acid in treating and preventing idiosyncratic drug-induced liver injury. A systematic review, Front. Pharmacol., 12, 744488, https://doi.org/10.3389/fphar.2021.744488.
- Cullen, S. N., Rust, C., Fleming, K., Edwards, C., Beuers, U., and Chapman, R. W. (2008) High dose ursodeoxycholic acid for the treatment of primary sclerosing cholangitis is safe and effective, J. Hepatol., 48, 792-800, https://doi.org/10.1016/j.jhep.2007.12.023.
- Ma, H., Zeng, M., Han, Y., Yan, H., Tang, H., Sheng, J., Hu, H., Cheng, L., Xie, Q., Zhu, Y., Chen, G., Gao, Z., Xie, W., Wang, J., Wu, S., Wang, G., Miao, X., Fu, X., Duan, L., Xu, J., Wei, L., Shi, G., Chen, C., Chen, M., Ning, Q., Yao, C., and Jia, J. (2016) A multicenter, randomized, double-blind trial comparing the efficacy and safety of TUDCA and UDCA in Chinese patients with primary biliary cholangitis, Medicine (Baltimore), 95, e5391, https://doi.org/10.1097/MD.0000000000005391.
- Xiang, X., Yang, X., Shen, M., Huang, C., Liu, Y., Fan, X., and Yang, L. (2021) Ursodeoxycholic acid at 18-22 mg/kg/d showed a promising capacity for treating refractory primary biliary cholangitis, Can. J. Gastroenterol. Hepatol., 2021, 6691425, https://doi.org/10.1155/2021/6691425.
- Steen, E. H., Short, W. D., Li, H., Parikh, U. M., Blum, A., Templeman, N., Nagy, N., Bollyky, P. L., Keswani, S. G., and Balaji, S. (2021) Skin-specific knockdown of hyaluronan in mice by an optimized topical 4-methylumbelliferone formulation, Drug Deliv., 28, 422-432, https://doi.org/10.1080/10717544.2021.1886376.
- Rilla, K., Pasonen-Seppänen, S., Rieppo, J., Tammi, M., and Tammi, R. (2004) The hyaluronan synthesis inhibitor 4-methylumbelliferone prevents keratinocyte activation and epidermal hyperproliferation induced by epidermal growth factor, J. Invest. Dermatol., 123, 708-714, https://doi.org/10.1111/j.0022-202X.2004.23409.x.
- Supp, D. M., Hahn, J. M., McFarland, K. L., and Glaser, K. (2014) Inhibition of hyaluronan synthase 2 reduces the abnormal migration rate of keloid keratinocytes, J. Burn Care Res., 35, 84-92, https://doi.org/10.1097/BCR.0b013e3182a2a9dd.
- Kim, T., Kim, K. B., and Hyun, C. G. (2023) A 7-hydroxy 4-methylcoumarin enhances melanogenesis in B16-F10 melanoma cells, Molecules, 28, 3039, https://doi.org/10.3390/molecules28073039.
- Vassallo, J. D., Hicks, S. M., Born, S. L., and Daston, G. P. (2004) Roles for epoxidation and detoxification of coumarin in determining species differences in Clara cell toxicity, Toxicol. Sci., 82, 26-33, https://doi.org/10.1093/toxsci/kfh237.
- Egan, D., O’Kennedy, R., Moran, E., Cox, D., Prosser, E., and Thornes, R. D. (1990) The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds, Drug Metab. Rev., 22, 503-529, https://doi.org/10.3109/03602539008991449.
- Nagy, N., Gurevich, I., Kuipers, H. F., Ruppert, S. M., Marshall, P. L., Xie, B. J., Sun, W., Malkovskiy, A. V., Rajadas, J., Grandoch, M., Fischer, J. W., Frymoyer, A. R., Kaber, G., and Bollyky, P. L. (2019) 4-Methylumbelliferyl glucuronide contributes to hyaluronan synthesis inhibition, J. Biol Chem., 294, 7864-7877, https://doi.org/ 10.1074/jbc.RA118.006166.
- Охлобыстин А. В., Уфимцева А. К. (2020) Применение гимекромона при заболеваниях желчевыводящих путей: возможности и перспективы, Вопросы детской диетологии, 18, 66-74, https://doi.org/10.20953/1727-5784-2020-5-66-74
- Garrett, E. R., and Venitz, J. (1994) Comparisons of detections, stabilities, and kinetics of degradation of hymecromone and its glucuronide and sulfate metabolites, J. Pharm. Sci., 83, 115-116, https://doi.org/10.1002/jps.2600830128.
- Takeda, S., and Aburada, M. (1981) The choleretic mechanism of coumarin compounds and phenolic compounds, J. Pharmacobiodyn., 4, 724-734, https://doi.org/10.1248/bpb1978.4.724.
- Garrett, E. R., Venitz, J., Eberst, K., and Cerda, J. J. (1993) Pharmacokinetics and bioavailabilities of hymecromone in human volunteers, Biopharm. Drug Dispos., 14, 13-39, https://doi.org/10.1002/bdd.2510140103.
- Marshall, M. E., Mohler, J. L., Edmonds, K., Williams, B., Butler, K., Ryles, M., Weiss, L., Urban, D., Bueschen, A., and Markiewicz, M. (1994) An updated review of the clinical development of coumarin (1,2-benzopyrone) and 7-hydroxycoumarin, J. Cancer Res. Clin. Oncol., 120, S39-S42, https://doi.org/10.1007/BF01377124.
- Lake, B. G. (1999) Coumarin metabolism., toxicity and carcinogenicity: relevance for human risk assessment, Food Chem. Toxicol., 37, 423-453, https://doi.org/10.1016/s0278-6915(99)00010-1.
- Rosser, J. I., Nagy, N., Goel, R., Kaber, G., Demirdjian, S., Saxena, J., Bollyky, J. B., Frymoyer, A. R., Pacheco-Navarro, A. E., Burgener, E. B., Rajadas, J., Wang, Z., Arbach, O., Dunn, C. E., Kalinowski, A., Milla, C. E., and Bollyky, P. L. (2022) Oral hymecromone decreases hyaluronan in human study participants, J. Clin. Invest., 132, e157983, https://doi.org/10.1172/JCI157983.
- Селезнева Э. Я., Мечетина Т. А., Орлова Ю. Н., Коричева Е. С., Войнован И. Н., Безаева И. В., Дубцова Е. А., Бордин Д. С. (2016) Сравнительное исследование эффективности монотерапии УДХК и комбинации УДХК с гимекромоном у больных с билиарным сладжем 2 стадии, Экспериментальная клиническая гастроэнтерология, 10, 94-98.
- Hoffmann, R. M., Schwarz, G., Pohl, C., Ziegenhagen, D. J., and Kruis, W. (2005) Bile acid-independent effect of hymecromone on bile secretion and common bile duct motility, Dtsch. Med. Wochenschr., 130, 1938-1943, https://doi.org/10.1055/s-2005-872606.
- Abate, A., Dimartino, V., Spina, P., Costa, P. L., Lombardo, C., Santini, A., Del Piano, M., and Alimonti, P. (2001) Hymecromone in the treatment of motor disorders of the bile ducts: a multicenter., double-blind, placebo-controlled clinical study, Drugs Exp. Clin. Res., 27, 223-231.
- Camarri, E., Marchettini, G. (1988) Hymecromone in the treatment of symptoms following surgery of the bile ducts, Recenti Prog. Med., 79, 198-202.
- Ishizuka, S., Askew, E. B., Ishizuka, N., Knudson, C. B., and Knudson, W. (2016) 4-methylumbelliferone diminishes catabolically activated articular chondrocytes and cartilage explants via a mechanism independent of hyaluronan inhibition, J. Biol. Chem., 291, 12087-12104, https://doi.org/10.1074/jbc.M115.709683.
Supplementary files
