On the possibility of three-dimensional localization of the airframe noise sources using sequential non-synchronous microphone array measurements

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Рұқсат ақылы немесе тек жазылушылар үшін

Аннотация

The paper presents the result of using a previously developed method for three-dimensional localization of acoustic sources based on data from non-synchronous measurements with a multi-microphone array from various positions, adapted for dipole-type sources characteristic of airframe noise. The work consists of two parts. In the first, the developed method was verified using the example of localization of test dipole sources. Sources with different orientations of the dipole moment relative to the edges of the microphone array are considered. Based on the results of localization of test sources, it is shown that a dihedral array, the faces of which are parallel to the dipole moment of the source, allows for more accurate identification of a dipole source in three-dimensional space compared to the general case. In the second part of the work, the method is used to construct three-dimensional noise sources localization maps of a small-scale high-lift wing model with an imitation of extended landing gear, which has a complex structure of dipole sources of various amplitudes and directions. An analysis of the obtained volumetric localization maps in various frequency bands was carried out by comparing such localization with test cases and the possibility of localizing sources under study was shown.

Толық мәтін

Рұқсат жабық

Авторлар туралы

O. Bychkov

Central Aerohydrodynamic Institute

Хат алмасуға жауапты Автор.
Email: oleg.bychkov@tsagi.ru

Moscow Research Branch

Ресей, Moscow

M. Demyanov

Central Aerohydrodynamic Institute

Email: oleg.bychkov@tsagi.ru

Moscow Research Branch

Ресей, Moscow

Әдебиет тізімі

  1. Michel U. History of acoustic beamforming // 1st Berlin Beamforming Conference. 2006.
  2. Christensen J.J., Hald J. Beamforming — technical review no.1. Brüel & Kjaer, Technical Review 1–2004, 2004.
  3. Johnson D.H., Dudgeon D.E. Array Signal Processing, Concepts and Techniques, P T R Prentice Hall, Englewood Cliffs, 1993.
  4. Dolph C.L. A current distribution of broadside arrays which optimizes the relationship between beam width and sidelobe level // Inst. Radio Eng. 1946. Т. 34. С. 335–348.
  5. Бардышев В.И. Горизонтальная приемная случайная антенная решетка, согласованная с гидроакустическим волноводом // Акуст. журн. 2012. Т. 58. № 5. С. 610–613.
  6. Yardibi T., Bahr C., Zawodny N.S., Liu F., Cattafesta III L.N., and Lik J. Uncertainty Analysis of the Standard Delay-and-Sum Beamformer and Array Calibration // AIAA 2009-3120.
  7. Глебова Г.М., Аверьянов А.В., Кузнецов Г.Н. Экспериментальное исследование характеристик направленности векторно-скалярной антенны // Акуст. журн. 2011. Т. 57. № 5. С. 681–694.
  8. Клячкин В.И. Статистический анализ векторно-фазовых характеристик акустических полей и алгоритмы их регистрации // Акуст. журн. 2004. Т. 50. № 4. С. 516–523.
  9. Белова Н.И., Кузнецов Г.Н. Сравнение однонаправленного приема сигналов в волноводе с использованием линейных векторно-скалярных и комбинированных антенн // Акуст. журн. 2013. Т. 59. № 2. С. 255–267.
  10. Белова Н.И., Кузнецов Г.Н., Степанов А.Н. Экспериментальное исследование интерференционной и фазовой структуры потока мощности от локальных источников в мелком море // Акуст. журн. 2016. Т. 62. № 3. С. 318–329.
  11. Михайлов С.Г. Пеленгование векторно-скалярным приемником в поле анизотропной помехи // Акуст. журн. 2020. Т. 66. № 2. С. 170–180.
  12. Yang Y., Chu Z., Shen L., Xu Z. Functional delay and sum beamforming for three-dimensional acoustic source identification with solid spherical arrays // J. Sound Vib. 2016. V. 373. P. 340–359.
  13. Sarradj E. Three-dimensional acoustic source mapping with different beamforming steering vector formulations // Advances in Acoustics and Vibration. 2012. 292695.
  14. Yu L., Guo Q., Chu N., Wang R. Achieving 3D Beamforming by Non-Synchronous Microphone Array Measurements // Sensors. 2020. V. 20. 7308.
  15. Porteous R., Prime Z., Doolan C., Moreau D., Valeau V. Three-dimensional beamforming of dipolar aeroacoustic sources // J. Sound Vibr. 2015. V. 355. P. 117–134.
  16. Бычков О.П., Демьянов М.А. Обобщение стандартного алгоритма “бимформинг” для идентификации акустических источников с помощью несинхронных измерений микрофонной решеткой // Акуст. журн. 2022. Т. 68. № 2. С. 162–172.
  17. Curle N. The Influence of Solid Boundaries on Aerodynamic Sound // Proc. Roy. Soc. London. Ser. A 231. No. 1187. P. 505.
  18. Бычков О.П., Демьянов М.А., Фараносов Г.А. Локализация дипольных источников шума плоскими микрофонными решетками // Акуст. журн. 2019. Т. 65. № 5. С. 675–687.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML
2. Fig. 1. Configurations of a polyhedral microphone array: (a) — a two-sided microphone array; (b) — a three-sided microphone array.

Жүктеу (1MB)
3. Fig. 2. Localization of the z-dipole test source, dynamic range 2 dB: (a) — monopole function of sources; (b) — z-dipole function of sources. Upper figures — synchronous data processing, lower figures — asynchronous data processing. Dihedral microphone array. The black dot indicates the location of the test source.

Жүктеу (1MB)
4. Fig. 3. Localization of the x-dipole test source, dynamic range 2 dB: (a) — monopole function of sources; (b) — x-dipole function of sources. Upper figures — synchronous data processing, lower figures — asynchronous data processing. Dihedral microphone array. The black dot indicates the location of the test source.

Жүктеу (1MB)
5. Fig. 4. Localization of (a) z-dipole and (b) x-dipole test sources, dynamic range 2 dB with the corresponding dipole function of the sources. Triangular microphone array, asynchronous measurements. The black dot indicates the location of the test source.

Жүктеу (1016KB)
6. Fig. 5. Experimental study of noise flowing around a wing console element in the AK-2 TsAGI: (a) — microphone array on the side, position 1; (b) — microphone array on top, position 2; (c, d) — experimental diagram with approximate positions of known dipole noise sources, top and front views. Configuration 1 (Table 1).

Жүктеу (6MB)
7. Fig. 6. Spectral sound pressure levels averaged over microphones (a) — gratings on the side (position 1); (b) — gratings on top (position 2); (c) — gratings in both positions. The results for configuration 1 are shown in black, configuration 2 — in red, and configuration 3 — in blue. Bandwidth 200 Hz

Жүктеу (580KB)
8. Fig. 7. Results of dipole source localization for configuration 3: (a) — localization of the y-dipole at a frequency of floc = 1 kHz; (b) — y-dipole, floc = 3 kHz; (c) — x-dipole, floc = 5 kHz. Dynamic range is 2 dB. The figures also show the maximum SPLmax levels of the localized sources (source amplitude at a distance of 1 m on the dB scale).

Жүктеу (1MB)
9. Fig. 8. Results of dipole source localization for configuration case 2: (a) — localization of x-dipole at frequency floc = 2 kHz; (b) — x-dipole, floc = 3 kHz; (c) — x-dipole, floc = 5 kHz. Dynamic range 2 dB.

Жүктеу (1MB)
10. Fig. 9. Results of dipole source localization for configuration 1: (a) — localization of y-dipole at frequency floc = 1 kHz; (b) — y-dipole, floc = 3 kHz; (c) — x-dipole, floc = 3 kHz; (d) — x-dipole, floc = 5 kHz. Dynamic range 2 dB

Жүктеу (2MB)
11. Fig. P1. Results of localization of monopole sources for the case of configuration 3 at different frequencies: (a) — floc = 1 kHz; (b) — floc = 3 kHz; (c) — floc = 5 kHz. Dynamic range 2 dB

Жүктеу (1MB)
12. Fig. P2. Results of localization of monopole sources for the case of configuration 2 at different frequencies: (a) — floc = 2 kHz; (b) — floc = 3 kHz; (c) — floc = 5 kHz. Dynamic range 2 dB

Жүктеу (1MB)
13. Fig. P3. Results of localization of monopole sources for the case of configuration 1 at different frequencies: (a) — floc = 1 kHz; (b) — floc = 3 kHz; (c) — floc = 5 kHz. Dynamic range 2 dB

Жүктеу (1MB)

© The Russian Academy of Sciences, 2025