Converging Cylindrical Detonation Wave: Numerical Modeling and Experiment

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Numerical modeling of formation and propagation of detonation wave with concave curvature was conducted in present work. The modeling follows experiments where detonation of cylindrical explosive charge is initiated by multiple 3D-printed initiation modules. Specific experiments were used to adjust parameters of the equation of state of charge explosive and of lenses material employed. The modeling has revealed main features in performance of single initiation module and of an initiation module installed in an experimental setup. Possibility of formation of “smooth” converging detonation wave was confirmed empirically.

Full Text

Restricted Access

About the authors

V. G. Sultanov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Author for correspondence.
Email: sultan@ficp.ac.ru
Russian Federation, Chernogolovka

S. V. Dudin

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: sultan@ficp.ac.ru
Russian Federation, Chernogolovka

V. A. Sosikov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: sultan@ficp.ac.ru
Russian Federation, Chernogolovka

S. I. Torunov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: sultan@ficp.ac.ru
Russian Federation, Chernogolovka

E. V. Vasilenok

Moscow Institute of Physics and Technology

Email: sultan@ficp.ac.ru
Russian Federation, Dolgoprudny

D. Yu. Rapota

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: sultan@ficp.ac.ru
Russian Federation, Chernogolovka

A. V. Razmyslov

Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences

Email: sultan@ficp.ac.ru
Russian Federation, Chernogolovka

References

  1. Medvedev S.P., Khomik S.V., Maximova O.G. et al. // Russ. J. Phys. Chem. B. 2023. V. 17. № 4. P. 962 https://doi.org/10.1134/S1990793123040279
  2. Medvedev S.P., Ivantsov A.N., Anderzhanov E.K. et al. // Russ. J. Phys. Chem. B V. 16. № 6. P. 1137. https://doi.org/10.1134/S1990793122060197
  3. Zeldovich Ya.B. // JETP. 1942. V. 12. № 9. P. 389
  4. Dudin S.V., Sosikov V.A., Torunov S.I. // J. Phys.: Conf. Ser. 2017. V. 946. 012057. https://doi.org/10.1088/1742-6596/946/1/012057
  5. Shutov A.V., Sultanov V.G., Dudin S.V. // J. Phys.: Conf. Ser. 2016. V. 774. 012075. https://doi.org/10.1088/1742-6596/774/1/012075
  6. Sosikov V.A., Torunov S.I., Dudin S.V. // J. Phys.: Conf. Ser. 2018. V. 1147. 012027. https://doi.org/10.1088/1742-6596/1147/1/012027
  7. Dudin S.V., Sosikov V.A., Torunov S.I. // J. Phys.: Conf. Ser. 2016. V. 774. 012074. https://doi.org/10.1088/1742-6596/774/1/012074
  8. Gubachev V.A., Bondarenko N.M., Fillipov V.A., Galkin E.A. Device to generate blast wave. Patent RU2451895C1. Russia // 2012.
  9. Krutik M.I., Arinin V.A., Ткаченко B.I., Dudin S.V. // Combustion and explosion. 2024. V. 17. № 2. P. 78. https://doi.org/10.30826/CE24170212
  10. Heylmun J., Vonk P., Brewer T. blastFoam: An OpenFOAM Solver for Compressible Multi-Fluid Flow with Application to High-Explosive Detonation. Synthetik Applied Technologies LLC. 2019.
  11. Heylmun J., Vonk P., Brewer T. blastFoam User Guide. Synthetik Applied Technologies LLC. 2019.
  12. Utkin A.V., Mochalova V.M., Torunov S.I. // Russ. J. Phys. Chem. B. 2011. V. 5. № 3. P. 513.
  13. Ermolaev B.S., Komissarov P.V., Basakina S.S., Lavrov V.V. // Russ. J. Phys. Chem. B 2023. V. 17. № 5. P. 1143. https://doi.org/10.1134/S1990793123050020
  14. Ermolaev B.S., Komissarov P.V., Basakina S.S., Lavrov V.V. // Russ. J. Phys. Chem. B 2024. V. 18. № 2. P. 494. https://doi.org/10.1134/S1990793124020076
  15. Dobratz B.M. LLNL Explosive Handbook: Properties of Chemical Explosives and Explosive Simulants. L.: LLNL. 1981.
  16. Sultanov V.G., Dudin S.V., Sosikov V.A. et al. // Combust. Explos. Shock Waves. 2023. V. 59. № 4. P. 516. https://doi.org/10.1134/S0010508223040159
  17. Dudin S.V., Sosikov V.A., Torunov S.I. // Combust. Explos. Shock Waves. 2019. V. 55. № 4. P. 507. https://doi.org/10.1134/S0010508219040191

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Experimental assembly for the formation of a cylindrical detonation wave: a - complete assembly with 18 initiation units (in a circle) and the main charge (in the centre); b - single initiation module printed on a 3D printer: lens (top) and conical socket (bottom).

Download (522KB)
3. Fig. 2. Experimental determination of the impact adiabatic of plastic. a - Scheme of the experiment: an aluminium striker 4 with a velocity of 1130 m/s strikes the aluminium screen 1; 2 - the sample under study (plastic); 3 - the water screen. The laser beam, which registers the foil motion, shines from the right through the water screen onto the aluminium foil (between the plastic and the water screen, not shown in the figure), which plays the role of a reflecting element; b - experiment - profile of the obtained velocity.

Download (623KB)
4. Fig. 3. Experimental determination of the shock wave velocity in the lens: a - scheme of the experiment, b - profiles of the obtained velocity, solid curve - the centre of the lens, dashed curve - 8 mm from the centre of the lens.

Download (744KB)
5. Fig. 4. Numerical modelling. Position of the shock (a) and detonation (b, c) wave fronts at different time instants for an assembly (longitudinal slice at the centre) with unfilled BB gaps between initiation modules: a - 8 µs, b - 9 µs, c - 10 µs. Shockwave lenses and initiation modules are shown in dark colour.

Download (657KB)
6. Fig. 5. Numerical modelling. Position of the shock (a) and detonation (b, c) wave fronts at different time moments for the assembly (longitudinal slice at the centre) with the gaps between initiation points filled with explosives: a - 8 µs, b - 9 µs, c - 10 µs. Shockwave lenses and initiation modules are shown in dark colour.

Download (667KB)
7. Fig. 6. Scheme of a single initiation module: 1 - detonation cord insertion, 2 - initiation module housing, 3 - plastic explosive, 4 - lens made of polymer material, 5 - part of the pressed (main) charge. Detonation wave position: A - in the PVW, B - in the lens, C - in the main explosive charge.

Download (447KB)
8. Fig. 7. Experimental results: a - DV touches the top of the lens; b - shock wave exits on the cylindrical side surface of the charge, c - DV moves along the main charge.

Download (1MB)

Copyright (c) 2025 Russian Academy of Sciences